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Executive Summary 

Vehicle-to-Everything (V2X) communication technologies have the potential to enhance traffic safety by 
enabling real-time exchange of information between vehicles and infrastructure, supporting functions 
like driver warnings, dynamic speed advisories, and incident alerts. These technologies, while promising, 
remain in the research phase and lack comprehensive methods to quantify their safety benefits when 
deployed at scale. To address this, the Mobility COE conducted a project to assess the safety impacts of 
V2X technologies using model-based risk assessments (PRA), a method common in industries like 
nuclear, space, and defense. 

As a starting point, this project focused on the interaction between V2X, Forward Collision Warning 
(FCW), and Automated Emergency Braking (AEB). FCW provides warnings based on a vehicle’s sensors 
detecting potential collisions, while AEB intervenes if the driver does not act after an FCW warning. V2X 
is expected to enhance these functions by providing earlier warnings through communications with 
other vehicles and infrastructure. Studying the interactions between these technologies is crucial, as 
AEB will become a standard feature in vehicles by 2029, and understanding the interaction of V2X with 
these safety systems is key to maximizing its benefits. In addition, as the potential impact of V2X will 
depend on the proportion of vehicles and infrastructure equipped with V2X capabilities, providing 
reliable estimates of potential safety benefits to infrastructure owners and operators (IOO) is key to 
supporting the efficient resource allocation and deployment of V2X-enabling technologies. 

The study used probabilistic risk assessments (PRAs) to model potential hazards, their likelihood, and 
consequences. The PRAs incorporated various analysis techniques, including Event Sequence Diagrams, 
Fault Tree Analysis, and Bayesian Belief Networks, to simulate how V2X, FCW, and AEB might reduce 
crashes. These models also considered factors such as hardware/software reliability, weather, lighting, 
road conditions, and driver behavior. More importantly, these models flexibly incorporate data from 
academic studies, limited pilot deployments, and general hardware and software failure rates and can 
be updated as more real-world deployment data is collected. 

Using a scenario where a driver encounters a slow or stopped vehicle on a straight road and must take 
action to avoid a collision, initial baseline probabilities of collision outcomes (no collision, property 
damage, injury) were established without driver assistance systems. These were then compared to 
scenarios where FCW and AEB were available. Introducing V2X-enhanced warnings further improved 
safety, with a predicted additional reduction in crash probabilities by 7-8%. This amounts to an 
estimated crash modification factor of 0.24 (from 0.16) for V2X-enhanced FCW and 0.55 (from 0.49) for 
V2X-enhanced FCW+AEB for all crash severities. The project developed an online tool, MoPRA, which 
allows users to explore these scenarios, assess risks, and conduct uncertainty analysis. The tool also 
highlights which subsystem failures most impact safety, thus providing insights for future data collection 
initiatives and reliability requirement derivation.  

Future research could expand to include metrics beyond crash data, such as driving behaviors like 
tailgating, harsh braking, and lane changes, as well as the impact of preventive measures such as speed 
advisories. Larger-scale studies are also needed to assess driver compliance with warnings and the real-
world effectiveness of V2X technologies in different environments. Furthermore, it is essential to 
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incorporate realistic deployment and performance assumptions into V2X reliability estimations. The 
ultimate goal is to develop generalizable models that can represent the impact of V2X on safety and 
driving behavior in various scenarios, including crash avoidance applications and broader driving 
behaviors. 
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Introduction 

Vehicle-to-Everything (V2X) communication paradigms have been developed to address the limitations 
single-vehicle perception and decision-making capabilities across different Levels of Driving Automation 
(1, 2). V2X refers to a combination of technologies embedded into vehicles, infrastructure, and other 
road users, relying on a combination of sensor data, wireless connectivity networks, and real-time 
calculations to increase the situational awareness of the driver or the Automated Driving System (ADS), 
enhancing perception, localization, and planning tasks (3). While significant research efforts have been 
made towards designing and implementing V2X-enabled functions for advanced driver assistance 
systems (ADAS) and cooperative driving automation (CDA) technologies, several challenges must still be 
addressed to quantify their safety benefits and provide reliable information for technology adopters.  

Many academic and industry-led research studies have focused on the reliability and security challenges 
to V2X-reliant functions. In recent years, several pilot projects have sought to quantify the safety 
benefits of different V2X technologies, providing the first estimations of real road safety improvement. 
These studies have mostly focused on V2X-enabled driver warnings providing basic traffic, weather, and 
safety information. As more real-world driving condition data is collected, it is of interest to provide a 
systematic approach to incorporating new evidence and fairly assessing the effect of these technologies 
on driver behavior and road safety. There is a need for systematic methods and approaches to 
determine the traffic and safety impacts of V2X technologies, including key aspects of hardware, 
software, and human reliability, as well as connectivity, and improved methods to assess traffic and 
safety impacts. 

This work presents an initial approach to perform probabilistic risk assessments (PRA) of V2X 
technologies based on the Hybrid Causal Logic (HCL) framework which contains a multi-layer structure 
that integrates event sequence diagrams (ESDs), fault trees (FTs), and Bayesian belief networks (BBNs) 
providing a model-based approach to system analysis. This approach draws from novel hazard 
identification methodologies to define agents, critical events, and key tasks, failures, and errors. The 
methodology incorporates the effect driver-system team models (4, 5) on the overall system’s safety, as 
well as enhancing context representation to consider effects of road types, weather conditions, traffic 
levels, and technology effectiveness under limited data availability.  

The developed HCL models are packaged in an online web-based application Mobility PRA (MoPRA) that 
enables users to explore the selected scenarios, key importance metrics, and perform uncertainty 
analysis. The development of MoPRA is centered around a case study on V2X-enhanced collision 
avoidance functionalities. This report comprises a description of the methodologies, assumptions, data 
sources and processing steps implemented, as well as the scenario models developed. Initial estimations 
of the safety benefits of V2X-enhanced driver warnings is presented together with a discussion on data 
sources and potential data collection efforts to strengthen PRA-based analysis of V2X technologies.  

Research Gaps and Objectives 

Vehicles equipped with automated driving assistance functions (SAE Levels 0-2) – frequently referred to 
as ADAS – will become increasingly common, introducing more safety-oriented features in public roads, 
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such as Forward Collision Warning (FCW) and Automated Emergency Braking (AEB) (6). While these 
features have a high potential to increase driver’s awareness and reduce the occurrence or severity of 
incidents (7, 8), these focus on emergency situations that require short reaction times (9). In an effort to 
provide earlier warnings to drivers, vehicle communication-related technologies have been explored as 
a method to provide timely information on road infrastructure and traffic status, aiming to increase the 
time available to drivers to safely react to dynamic road conditions. Similarly, providing redundancy to 
the host vehicle is crucial to address limitations of single-vehicle perception at higher Levels of Driving 
Automation (SAE Levels 3-5) (10).  

V2X is a broad term that encompasses a combination of technologies situated on both the vehicle side 
(On-Board Units – OBUs), on the infrastructure side (Road-Side Units – RSUs), and even configurations 
with Vehicle-to-Pedestrian (V2P) information sharing. The content and format of messages transmitted 
between vehicles and infrastructure has been detailed through different standards, such as SAE J2735 
(11). Safety applications in Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) schemes consider 
the use of messages such as Basic Safety Messages (BSM) detailing the state of the vehicle, Road 
Weather Messages (RWM) or Road Side Alerts (RSA) providing relevant information about road 
conditions. In the context of ADAS, these messages are then displayed through a combination of visual, 
audio, or haptic signals, alerting drivers to evolving road conditions ahead of time. However, the 
adoption of these technologies has been slower than expected due to a number of factors, including the 
expected transition from Dedicated Short-Range Communications (DSRC) to Cellular Vehicle-to-
Everything (C-V2X) communication standards.  

Developing robust V2X cost-benefit analysis tools is key to support different stakeholders’ decision to 
deploy infrastructure-side technologies, in order to take advantage of and further increase the benefits 
of communication-based vehicle safety functions. The objective of this project is to develop a risk-
informed tool for V2X deployment focused on hardware and software reliability, connectivity, driver 
behavior and the impact of road and weather conditions. This tool is a first step towards developing 
probabilistic risk assessment methodologies to derive safety, risk, and reliability requirements for V2X 
technology deployments. This approach relies on four main pillars: (1) focus on scenario-based analysis, 
(2) provide relevant risk-reduction importance metrics, (3) embed context and other user inputs in the 
scenario development, and (4) provide means to conduct uncertainty analysis on the model’s 
parameters and technology reliability, connectivity, or deployment assumptions. 

Phase I: Development of V2X Risk Assessment Tool 

The initial phase of this project aimed to develop a PRA-based tool featuring V2X technologies. This tool 
is envisioned as a web-based application where users may choose from different parameters, 
assumptions, and metrics to estimate risk-reduction benefits. The development of this phase is 
summarized as follows:  

• Task 1.1: A case study was selected to demonstrate the risk assessment methodology for V2X 
related technology. This case study involves the use of V2X-enhanced driver warnings for 
collision avoidance scenarios and its interaction with emergency warnings and automated 
braking functions (i.e., FCW and AEB).  

• Task 1.2: The crash reduction benefits of the selected technologies were characterized based on 
available crash databases, industry-reported crash modification factors, V2X technology 
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characteristics, and other contextual factors (e.g., road geometry, weather conditions, driver 
condition). 

• Task 1.3: The HCL framework was employed to develop models representing multiple scenarios 
targeting the use case, representing the system at different levels. These models focus on 
subsystem functions and interactions, including hardware, software, connectivity, and driver-
related elements.  

• Task 1.4: The HCL models developed for V2X-enhanced FCW and AEB technologies were hosted 
on an online web application “Mobility PRA” (MoPRA) that enables the user to obtain collision 
risk estimations.  

• Task 1.5: The MoPRA tool and the underlying HCL models were used to provide initial risk 
reduction estimations for the selected use cases based on available data, model assumptions, 
and technology effectiveness estimations. The HCL framework was employed to perform 
uncertainty and sensitivity analysis of technology effectiveness.  

• Task 1.6: Data collection initiatives were proposed based on the models’ development process 
and analysis. This focuses on data sources, safety metrics, and other information relevant to 
reducing the risk reduction estimation uncertainties and improving the models developed.  

The structure of the report is as follows. First, the overall risk-informed assessment methodology is 
presented, introducing the HCL tools capabilities and the modeling approach of this work. Then the 
modeling assumption, data sources, developed scenarios are described, and the initial estimates of V2X 
impacts benefits are discussed. Following this, identified data collection priorities and future model 
improvements are discussed. Finally, the implementation of the MoPRA tool is presented.  

Challenges and Limitations 

Assessing the safety impacts vehicle communication technologies introduced to public roads faces 
multiple technical and data-related challenges. The effectiveness of functions enabled or enhanced 
through V2V or V2I applications to reduce incident risks (either frequency or severity) depends on 
multiple factors, including technology deployment, communication, and market penetration 
assumptions.  

Current data limitations represent one of the most important challenges. Frequently, studies rely on 
analyzing crash statistics specific to a function (“target crashes”) and estimating the risk-reduction 
impact based on quasi-exposure methods, for instance, the role of FCW in front-rear vehicle collisions. 
However, the impact of contextual information, such as weather, road, and driver conditions, can 
significantly alter the function’s effectiveness and are usually not reported in these studies. As vehicles 
with advanced safety functions increasingly participate in public roads, more information can be 
collected and used to determine the real-word benefits. However, as V2X technologies have not been 
deployed at scale, this information is not readily available, and in general, consist of simulation or 
closed-track testing. Model- and scenario-based approaches provide strategies towards identifying the 
role critical system functions or components play in risk scenario development even under limited data 
regimes. Probabilistic risk assessment frameworks provide a path to estimate and propagate uncertainty 
from component- to system-level effects, considering hardware, software, environment, and human 
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factors. In addition, these models provide a flexible path towards identifying the highest contributors to 
system uncertainty and incorporating new evidence as it is collected.  

The scope of this initial work phase is limited to collision avoidance scenarios for rear-end collisions 
between two vehicles. Further analysis is required to extend analysis to the surrounding traffic-level 
effects as well as pre-crash scenario driver behavior. Currently, the MoPRA web application provides 
inputs to Crash Modification Factor (CMF) calculations for V2X-enhanced FCW and AEB functions.  
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Risk-Informed Assessment 

Methodology 

This work leverages multiple PRA methods and tools to estimate the risk reduction benefits of V2X-
enhanced safety functions. This section briefly introduces the framework structure, modeling, and 
quantification approach.  

Hybrid Causal Logic Methodology 

PRA approaches can provide a comprehensive sensitivity analysis for technology adoption, 
effectiveness, and risk reduction, relying on a series of tools to estimate the risk of complex systems, 
providing both qualitative and quantitative insights to risk management (12). The HCL framework 
consists of a model-based approach to system analysis, containing a multi-layer structure that integrates 
event sequence diagrams (ESDs), fault trees (FTs), and Bayesian belief networks (BBNs. These modeling 
approaches, employed in both research and industry, have provided a basis for many industry standards 
(13). 

An effective approach to modeling risks in complex systems involves employing ESDs to capture 
abnormal system behaviors and then utilizing FTs to analyze the contributing causes of the functional 
events identified in the ESDs. Both ESD and FT events can be linked to BBN structures, which are well-
suited for representing common cause failures and the 'soft' causal dependencies arising from human, 
socio-economic, regulatory, or physical factors. Furthermore, BBNs provide a framework for linking 
these dependencies to quantification models that incorporate incomplete information and soft factors. 
Based on the framework developed in (14), this work presents an early implementation of HCL to model 
high-level collision avoidance scenarios (15). In addition, when coupled to probabilistic simulation 
capabilities, these methods allow for uncertainty propagation analysis in low-data regimes. Probability-
based approaches such as Monte Carlo simulations are typically used for uncertainty propagation 
through system models. This technique requires empirical input data or expert judgement in the form of 
probability density functions of relevant parameters (16). Thus, even in low-data regimes, different 
importance metrics can be used to identify the relevance of model parameters and prioritize future data 
collection initiatives.  

Modeling Methods 

This section briefly describes the modeling methods involved in the HCL methodology.  

Event Sequence Diagrams (ESD) 

ESDs can be defined as generalized event trees (ETs), allowing them to represent better dynamic 
systems. ESDs depict a flowchart diagram (Figure 1) which begins with an initiating event (IE) and follows 
the subsequent sequence of event successes or failures in safety systems up to a variety of potential 
resolutions of the situation (end states). Each success or failure is represented by a probability value and 
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each end-state is associated with a severity. Thus, ESDs allow a graphical representation of the risk 𝑅, is 
defined as the set of triplets:  

 𝑅 = {𝑠𝑖, 𝑝𝑖, 𝑥𝑖}, 𝑖 = 1, 2, … , 𝑁 (1)  

where 𝑠𝑖  is a scenario identification or description; 𝑝𝑖  is the probability of that scenario; and 𝑥𝑖 is the 
consequence or evaluation measure of that scenario, i.e., the measure of damage (17). 

Figure 1: Event Sequence Diagram sample model. 

The probability of success or failure of each event may be associated with a known probability 
distribution, or obtained through other models, such as FTs or BBNs.  

Fault Trees (FT) 

These models represent the possible lower-level failures that contribute to an undesirable event (the 
top event, commonly associated with an ESD event). FTs can be used to represent the behaviors of the 
physical system (hardware, software, and environmental factors) as possible causes, or contributing 
factors, to accidents and incidents. The structure of the FT is used to represent system failure through 
Boolean logic using and/or clauses (Figure 2).  

The probability of success or failure of each basic event may be associated with a known probability 
distribution, or obtained through other models, such as other FTs or BBNs.  

Bayesian Belief Networks (BBN) 

Bayesian networks are models that integrate limited cause and effect knowledge with conditional 
probabilities. A BBN can be viewed as a probabilistic "expert system" in which the knowledge base is 
represented by the map of the network and the conditional probability tables of each node.  

In HCL, the conditional probability tables for dependent nodes can be defined in terms of their parent 
nodes (Figure 3). By setting evidence (the state of a node is known), inferences can be made about the 
state of related nodes based on Bayesian updating methods.  
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Figure 2: Fault Tree sample model. 

Figure 3: Bayesian Network sample model. 
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These models combine probability theory with graph theory to construct directed acyclic graphs (DAG), 
where the network structure is embedded with the system’s operational and failure causal logic (18), 
(19). It provides a method for explicit quantitative treatment of uncertainty and partial information, 
where inferences are made through Bayesian updating methods:  

 
𝜋(𝑥|𝑥′) =

𝐿(𝑥′|𝑥) 𝜋0(𝑥)

∫ 𝐿(𝑥′|𝑥) 𝜋0(𝑥)𝑑𝑥 
  (2)  

where 𝜋0(𝑥) represents the prior belief about the behavior of 𝑥, 𝐿(𝑥’|𝑥) likelihood of evidence 𝑥’ given 
the model of 𝑥, and 𝜋(𝑥|𝑥’) the resulting posterior distribution.  

Model Development Logic  

The construction of the ESD, FT, and BBN models are based on the Information, Decision and Action 
(IDA) cognitive model (20). This framework was originally developed to assess the role of nuclear power 
plant operators in response to emergencies. It categorizes failures and errors stemming from three 
different stages: data collection and initial interpretation (Information Phase), reasoning and decision-
making (Decision Phase), and action implementation (Action Phase). This framework has also been 
extended to studying autonomous system operations through Concurrent Task Analysis (CoTA) (21, 22). 
These methods can improve the robustness of the hazard analysis prior to the quantitative risk modeling 
(23), as well as aiding the identification of the most critical data needs. Modeling human and machine 
agents at the same level of detail, such as the driver and the vehicle, allows for a more comprehensive 
analysis of functional interfaces and task dependencies (14).  

Figure 4 presents a high-level diagram of the I-D-A tasks associated with each agent – the driver and the 
vehicle –dependent of the level of driving automation (24).  

Figure 4: IDA functional flow chart. 

Vehicle actions (A-Stage) may include transmitting FCWs to the driver, implementing AEB to avoid or 
mitigate a collision, emitting a takeover request (TOR) to the driver, or autonomously implementing 
Dynamic Driving Tasks (DDTs) based on a combination of data-driven and rule-based decision-making 
algorithms (D-Stage). In this context, V2X has the potential to provide redundancy, either to 
complement the driver’s or the single-vehicle’s real-time perception functions (I-Stage) and better 
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inform both agents’ decision-making processes. A crucial aspect to consider is how different contextual 
factors play in the development of driving scenarios. This includes elements such as road types, weather 
conditions and traffic levels. These elements would contribute to the scenario exposure (expressed as 
the ESD’s initiating event) and the driving task complexity estimations.  

HCL Software and Quantification  

The HCL software provides developers with the ability to construct system models and select methods 
to represent event probabilities.  

• Each event in an ESD can be characterized by a failure probability, or it can be linked to other FT 
and ESD events, or directly to a BBN node. Likewise, each FT event may be represented by a 
failure probability or linked to other FTs or BBN nodes.  

• Each ESD or FT event can be represented by a constant failure probability, a user-defined 
expression, and different probability distributions for failures occurring on-demand or during 
operation.  

Probabilities may be represented by known constant values or different distributions. Failures on 
demand may be modeled through uniform, normal, or lognormal distributions, while Weibull and 
exponential distributions are available to represent failures during operation. In addition, non-
parametric distributions are available given the user input data.  

HCL calculates probabilities of occurrence for each end-state and provides risk importance metrics at 
component level. Different rank importance measures are implemented in HCL to rank system 
components with respect to their influence on the overall system reliability. This ranking may be used to 
find the top contributors to system failure, relax reliability requirements for the lowest contributors to 
system failures, and perform sensitivity analysis for model parameters. These measures are dependent 
on the system logic, structure, and reliability values. Some relevant measures to identify critical 
components are:  

• Conditional Importance Measure: The conditional probability of system failure given that a 
specific component has already failed. A high value may indicate that the reliability of this 
component significantly contributes to the overall system reliability.  

• Marginal Importance Measure: The sensitivity of the system’s reliability with respect to changes 
to the reliability of the specific component. Components with high marginal importance are 
critical to system reliability and more efforts should be invested into improving their reliability 
or changing the structure of the system to reduce their relative importance.  

• Improvement Potential: Measure that indicates the extent to which system reliability improves 
when the failure probability of a specific component is reduced to zero.  

• Criticality: Measure that indicates which component is more likely to have led to a system 
failure.  

• Diagnostic Importance Measure (Fussell-Vesely): Measures the probability that a failure path 
including a specific component leads to a system failure.  
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• Risk Achievement Worth (RAW): Quantifies the relative increase in the system failure probability 
given that a specific component has failed. Values close to 1 imply that an increase in the 
component’s reliability is negligible towards system reliability.  

• Risk Reduction Worth (RRW): Quantifies the relative decrease in the system failure probability 
given that a specific component is functioning. 

The HCL software also provides tools to conduct uncertainty analysis through different simulation 
methods. Uncertainty is defined in the form of a distribution, expression, or uncertain BBN link in a basic 
event in the developed FTs and ESDs representing the system. Different sampling methods are 
implemented in the software, including Monte Carlo and three variants of Latin Hypercube sampling.  

Please review the HCL documentation for more details1. 

Modeling and Quantification Approach 

This work leverages the HCL framework to represent critical collision avoidance scenarios by 
decomposing them into event sequences (ESD), where the probability of each event occurring can be 
expressed through failure-oriented logic trees (FTs) or through partial causal relationships (BBNs), and 
each sequence leads to outcomes with varying degrees of severity (based on crash severity 
classifications). Basic events in each of these models are related to hardware and software failures, as 
well as human errors and other external events. The probability of occurrence of each basic event is 
propagated through the model’s logic (represented by its structure) such that the probability of 
occurrence of each end-state is estimated, e.g., the probability of a property-damage only (PDO) crash.  

The safety evaluation of vehicle technologies typically relies on crash statistics, naturalistic driving 
studies, and simulations, with the effectiveness of these technologies often characterized by Crash 
Modification Factors (CMFs). CMFs represent the ratio of crash likelihoods with and without the 
implementation of a given safety intervention, quantifying the impact of the technology on reducing or 
increasing crash risk. The HCL-based approach underlines the importance of estimating collision 
probabilities under various conditions to assess performance differences. By comparing the end-state 
probabilities of collisions across technologies, CMFs can be derived, providing a standardized measure to 
evaluate and compare their safety benefits.  

Crash probabilities are estimated for five different cases to assess the effectiveness of different driving 
assistance and vehicle communication technologies. The first case serves as the baseline, representing a 
driver exposed to a rear-end collision scenario without any driver warning assistance. The second case 
introduces FCW technology, while the third includes AEB. The fourth case enhances FCW with V2X 
communication, and the fifth case additional incorporates AEB functionalities. Once the crash 
probabilities for these scenarios are estimated, the corresponding CMFs are derived for each case (FCW, 
AEB, and V2X-enabled warnings), quantifying their relative impact on reducing collision risk. 

Different types of data are required to support the safety benefit estimation of V2X-enabled collision 
avoidance features. The main sources of data used to establish the baseline crash rates and the crash 
rate reduction estimations include national traffic incident databases, industry-led ADAS effectiveness 

 
1 The Hybrid Causal Logic (HCL) software is hosted by The B. John Garrick Institute for the Risk Sciences. Available 
[online] at: https://apps.risksciences.ucla.edu/  

https://apps.risksciences.ucla.edu/
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studies using real-world data, pilot deployments of V2X-related technologies, and relevant academic 
publications. Figure 5 presents an overview of the data-informed modeling and integration approach, 
briefly described as follows: 

Figure 5: HCL-based quantification approach. 

1. Estimate end-state probabilities: End-state data is collected from different transport and 
incident databases to obtain estimations of the (a) base crash rates and the (b) crash reduction 
effect of supporting technologies (FCW, AEB and V2X). This step outputs estimated crash 
probabilities under varying driving conditions.  

a. Base incident rates: Databases providing the number and characteristics of police-
reportable crashes are queried to obtain a sub-sample representative of the selected 
use case. For this sub-sample, the relative frequency of different contextual factors (e.g., 
weather, road surface conditions, driver distraction) is calculated.  

Additional vehicle usage information is required to estimate the probability of a crash 
occurrence, e.g., annual vehicle miles traveled (VMT), the average number of trips, and 
average trip lengths. Combining the general exposure data with the information 
provided by the crash datasets enables the estimation of both the likelihood of crashes 
and the contextual conditions under which they occur. 

b. Technology effectiveness (FCW, AEB): This step involves compiling academic and 
industry sources reporting crash reduction rates for vehicles equipped with FCW and 
AEB under varying driving conditions. These crash reduction rates are applied to the 
base rate estimated in (a) to obtain modified crash probabilities. 

c. Technology effectiveness (V2X): This step involves compiling academic and industry 
sources reporting the effectiveness of V2X-enhanced driver warnings, including real-
world data collected from V2X pilot deployments and reported efficiencies in academic 
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literature. The estimated efficiencies are applied to the base rate estimated in (a) to 
obtain an initial estimate of crash probabilities. 

2. Propagate crash rates to basic event probabilities: The end-state base crash rates are then 
propagated to the lower-levels of the HCL model. The contribution of each contextual factor 
(e.g., weather, lighting conditions) towards an incident is estimated through Bayesian methods. 
This step outputs the prior probabilities of an incident occurring given the presence of 
contextual factors.  

3. Represent factors leading to crashes: A model representing the causal relationship between the 
contextual factors and the occurrence of an incident is populated with the values calculated in 
step (2). This model aims to represent how the presence of contextual factors affects the 
probability of an incident occurring. 

4. Model calibration: The objective of this stage is to adjust model structure, assumptions, and 
parameters to recreate the end-state probabilities derived in steps (1a, 1b). This involves 
compiling academic and industry sources reporting component-level failure rates related to 
hardware, software, and connectivity elements in the system, as well as driver behavior data. 
Base incident rates and reported CMF for FCW and AEB functionalities are used to validate 
model parameters and assumptions.  

5. Safety benefit estimation: After the model is calibrated, it is employed to estimate the crash 
reduction rates for V2X-enhanced driver warnings. These crash reduction rates are applied to 
the base rate estimated in (1a) to obtain the technology effectiveness and modified crash rates. 
Obtained end-state probabilities are compiled and the crash modification factors are calculated 
in a post-processing. 
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Developed Collision Avoidance 

Scenarios 

System Characteristics and Data Sources 

This section briefly describes the main characteristics of the technologies involved and the data sources 
supporting risk scenario quantification.  

Crash incident databases 

The Fatality Analysis Reporting System (FARS)2 provides nationwide statistics from every fatal traffic 
crash on public roads. This database provides information about fatal crashes, including weather and 
road conditions, road geometry and speed, and related driver factors, among other elements, per 
vehicle, incident, and road type. Similarly, the Crash Report Sampling System (CRSS)3 provides 
estimations of crash numbers based on a compilation of police-reported crashes involving all types of 
motor vehicles, pedestrians, and cyclists, ranging from property damage-only (PDO) crashes to those 
that result in injuries or fatalities. This database provides contextual information for each crash, 
including weather conditions, road geometry, and other crash-related factors, among other elements.  

To address collision avoidance scenarios, the FARS and CRSS databases were queried to estimate 
baseline crash rates. The query criteria were aligned with the filters commonly reported in the literature 
for rear-end collisions, as this crash type is the primary target for FCW and AEB technologies. The FARS 
dataset was queried under the following conditions:  

• Incidents occurred between 2019-2021 on the non-junction roadways, excluding special 
jurisdictions and work zone areas. This date range was selected based on more than 65% of new 
vehicle models across eight vehicle Original Equipment Manufacturers (OEMs) were equipped 
with AEB functions (6). 

• Incidents where only two vehicles were involved in front-to-rear collisions, excluding other road 
user-related incidents, such as those involving pedestrians and pedal cyclists, as well as those 
involving hit-and-run events. 

• Incidents where injuries/fatalities are recorded for drivers of motor vehicles in-transport.  

 
2 Fatality Analysis Reporting System (FARS) - National Highway Traffic Safety Administration, part of the U.S. 
Department of Transportation. Available [online] at https://www.nhtsa.gov/research-data/fatality-analysis-
reporting-system-fars  
3 Crash Report Sampling System (CRSS) - National Highway Traffic Safety Administration, part of the U.S. 
Department of Transportation. Available [online] at https://www.nhtsa.gov/crash-data-systems/crash-report-
sampling-system  

https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars
https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars
https://www.nhtsa.gov/crash-data-systems/crash-report-sampling-system
https://www.nhtsa.gov/crash-data-systems/crash-report-sampling-system
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Based on this selection, the data extracted for the crashes is summarized in Table 1. These variables 
were selected to represent the contextual conditions under which the crash developed (e.g., light and 
weather conditions). However, some variables identified as relevant were removed from the current 
analysis given the limited samples available (e.g., roadway alignment, attempted avoidance maneuver). 
Additional variables may be extracted to support an additional severity assessment (e.g., number of 
fatalities, vehicle damage). 

Table 1: Variables of interest selected from FARS database. 

Variable Description FARS File Type Implemented 

Light 
Conditions 

The level of light that existed at the time 
of the crash. 

Accident Categorical Yes 

Weather The prevailing atmospheric conditions that 
existed at the time of the crash 

Accident Categorical Yes 

Speeding 
Related 

Whether the driver was speeding, and it 
was related to the crash. 

Vehicle Categorical Yes 

Speed Limit The speed limit just prior to this vehicle’s 
critical precrash event 

Vehicle Numerical Yes 

Roadway 
Alignment 

The roadway alignment prior to this 
vehicle’s critical precrash event 

Vehicle Categorical No 

Roadway 
Surface 

The roadway surface condition prior to 
this vehicle’s critical precrash event 

Vehicle Categorical Yes 

Attempted 
Avoidance 
Maneuver 

The movements/actions taken by this 
driver, within a critical crash envelope, in 
response to the “Critical Precrash Event.” 

Vehicle Categorical No 

Age The person’s age in years on the date of 
the crash. 

Person Numerical No 

Injury 
Severity 

The severity of the injury to this person in 
the crash using the KABCO scale4. 

Person Categorical Yes 

Drinking Whether alcohol was involved for this 
person and reflects the judgment of law 
enforcement. 

Person Categorical Yes 

 
4 KABCO scale: No Apparent Injury (O), Possible injury (C), Suspected Minor In jury (B), Suspected Serious Injury (A), 
Fatal Injury (K), Injured, Severity Unknown (U), Died Prior to Crash, Unknown/Not Reported.  



QUANTIFYING SAFETY IMPACTS OF V2X-ENABLED TRAFFIC SYSTEMS 

 

28 

Variable Description FARS File Type Implemented 

Drugs Whether drugs were involved for this 
person and reflects the judgment of law 
enforcement. 

Person Categorical Yes 

Driver 
Distraction 

The driver’s attention to driving prior to 
the driver’s realization of an impending 
critical event or just prior to impact if 
realization of an impending critical event 
does not occur. 

Driver 
Distraction 

Categorical Yes 

The FARS dataset provides information regarding injury severity resulting from each vehicle collision. To 
complement this information with lower severity crashes (i.e., PDO crashes), the CRSS dataset was 
queried under the following conditions:  

• Incidents occurred between 2019-2021 on the non-junction roadways, excluding special 
jurisdictions and work zone areas.  

• Incidents where only two vehicles were involved in front-to-rear collisions, excluding other road 
user-related incidents, such as those involving pedestrians and pedal cyclists, as well as those 
involving hit-and-run events. 

Based on this selection, the data extracted for the crashes is summarized in Table 2. This dataset was 
mainly used to estimate the proportion of crashes by severity.  

Table 2: Variables of interest selected from CRSS database. 

Variable Description Type Implemented 

Severity 
The reported severity of Motor Vehicle Crashes 
(PPO, Injury Only, or Fatal).  

Categorical Yes 

Light 
Conditions 

The level of light that existed at the time of the 
crash. 

Categorical Yes 

Weather 
The prevailing atmospheric conditions that 
existed at the time of the crash 

Categorical Yes 

Driver assistance technologies 

Automated driving technology is currently organized into a six-level scale by the Society of Automotive 
Engineers (SAE) (24). These levels are broadly divided into driver support features (Levels 0-2), 
commonly referred to as ADAS, and ADS (Levels 3-5). This division is based on the allocation of DDTs 
between humans and automated driving technology. While the driver is responsible for all DDTs at Level 
2 (L2), from Level 3 (L3) onwards, these are progressively transferred to the ADS while within its 
Operational Design Domain (ODD). This continues up to Level 5 (L5), which represents a theoretical fully 
self-driving vehicle, unrestricted in its operational range. Even if a vehicle operate within constrained 
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ODDs, scenarios may develop in which the automation performing specific portions of the DDTs may not 
be capable of reliably maintaining or reaching a safe state.  

At lower levels of driving automation, driver assistance features (≤L2), such as FCW and AEB, are 
expected to increase traffic safety by supporting the driver’s situational awareness or provide 
automated response to emergency conditions (25). However, recent studies suggest that more evidence 
is required to demonstrate automation benefits on traffic safety (26). FCW rely on vehicle sensors (e.g., 
radars, cameras) to detect and track the distance between the vehicle and objects on the road5. Driver 
warnings are triggered if the current vehicle speed leads to an imminent collision. Most algorithms rely 
on fixed time-to-collision (TTC) thresholds and driver reaction models, although implementations may 
differ significantly across vehicle OEMs (27, 28). Different modalities of driver warnings have been 
developed, employing visual (e.g., dashboards alerts), audible (alarms), and/or tactile (e.g., steering 
wheel, seat belt or seat vibrations), with the aim of providing timely information about the driving 
environment. The design, calibration, and effectiveness of driver warnings (related to FCW or other 
alerts) have been extensively studied, as well as the impact on driver behavior beyond crash scenarios 

(29–31).  

FCW functionalities have been combined with other technologies for collision avoidance support, such 
as AEB and other brake-assist functions, to assist or supply contingency braking, in an effort to reduce 
the severity of potential collisions6. Multiple elements can affect the efficiency of these collision 
avoidance technologies, in addition to driver attentiveness, including weather conditions affecting 
object detection functionalities, as well as road geometry and surface conditions affecting the 
automated braking response (7, 8, 32). Several academic and industry-led studies have shown that AEB 

could reduce rear-end collisions by 25% to 50% (8, 26, 32–35). Many of these studies rely on driving 
simulator experiments, naturalistic driving data and crash statistics analysis. Studies based on crash 
datasets frequently rely on the quasi-induced exposure method, where vehicles equipped or 
unequipped with certain features are compared based on the rate of target crashes to total crashes to 
account for the lack of traditional exposure data in crash datasets (34).  

An early study relying on crash statistics reported that the effectiveness of FCW alone, low-speed AEB, 
and FCW with AEB reduced rear-end striking crash involvement (Table 3) (33). A more recent study 
(2021) focused on specific vehicle models from 2013-2019 (Table 4) (34) and heavy-duty (Class 8) trucks 
incidents recorded during 2017-2019 (Table 5) (36). This study noted that driver warnings were issued in 
only 31% of rear-end crashes for FCW-equipped trucks, and that AEB intervened in 43% of rear-end 
crashes (where 26% involved autobrake activation). Note that these analyses do not report the effect 
varying driving conditions may have on the effectiveness of the FCW or AEB features.  

 
5ISO 22839:2013 Intelligent transport systems — Forward vehicle collision mitigation systems — Operation, 
performance, and verification requirements. This document specifies the concept of operation, minimum 
functionality, system requirements, system interfaces, and test methods for Forward Vehicle Collision Mitigation 
Systems (FVCMS). 
6 ISO 22733-1:2022 Road vehicles — Test method to evaluate the performance of autonomous emergency braking 
systems. This document specifies a method to evaluate the behavior of a vehicle equipped with an autonomous 
emergency braking system (AEBS), or dynamic brake support (DBS) during several accident scenarios. 
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Table 3: Reported rear-end striking crash involvement rates by Cicchino (2017). 

ADAS Feature/ Crash Type All Crashes Injury Crashes Third-party Injury Crashes 

FCW 27% (19%, 34%) 20% (2%, 34%) 18% (-1%, 33%) 

Low-speed AEB 43% (39%, 47%) 45% (40%, 48%) 44% (40%, 49%) 

FCW + AEB 50% (34%, 62%) 56% (24%, 74%) 59% (26%, 77%) 

Table 4: Reported reduction in the rate of police-reportable crashes for GM models by Leslie (2021). 

ADAS Feature/ Crash Type All Crashes Injury Crashes 

FCW 20% (17%, 23%) 31% (24%, 37%) 

FCW + AEB (camera) 38% (34%, 41%) 53% (46%, 59%) 

FCW + AEB (fusion/radar) 45% (40%, 49%) 58% (49%, 65%) 

Overall FCW + AEB 60% (57%, 63%) 45% (40%, 51%) 

Table 5: Reported reduction in the rate of police-reportable crashes by Teoh (2021). 

ADAS Feature/ Crash Type All Crashes Rear-end Crashes 

FCW 22% (9%, 33%) 44% (2%, 68%) 

FCW + AEB 12% (4%, 20%) 41% (18%, 57%) 

A recent study published by the Partnership for Analytics Research in Traffic Safety (PARTS)7 provided 
the largest government-automaker study to date about the real-world effectiveness of ADAS 
technologies in passenger vehicles in 2022 (7, 8). This study assessed the effectiveness of ADAS 
functions to reduce crashes, focusing on FCW and AEB, in addition to other applications such as 
pedestrian automatic emergency braking (PAEB), lane departure warning (LDW), lane keeping assistance 
(LKA), and lane centering assistance (LCA).  

The data sample analyzed covered incidents recorded between 2016-2021, combining data from eight 
participating industry partners8 and police-reported state-level crash data. Each ADAS function was 
assessed in relation to specific crash types (“system-relevant crashes”) compared to the control group. 
The system-relevant crashes for FCW and AEB applications were defined as those where:  

 
7 Partnership for Analytics Research in Traffic Safety (PARTS) - National Highway Traffic Safety Administration, part 
of the U.S. Department of Transportation. Available [online] at https://www.nhtsa.gov/parts-partnership-for-
analytics-research-in-traffic-safety  
8 Eight automakers are currently participating: American Honda Motor Co., Inc., General Motors LLC, Mazda North 
American Operations, Mitsubishi Motors R&D of America, Inc., Nissan North America, Inc., Stellantis (Fiat Chrysler 
Automobiles US LLC), Subaru Corporation, and Toyota Motor North America, Inc. 

https://www.nhtsa.gov/parts-partnership-for-analytics-research-in-traffic-safety
https://www.nhtsa.gov/parts-partnership-for-analytics-research-in-traffic-safety
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• The manner of crash was identified as front-to-rear. 

• Initial point of contact on the rear end of the vehicle. 

• Not a non-standard front-to-rear crash, such as vehicles that were reported to be backing up or 
parked (to remove these edge cases). 

• No crashes where more than two vehicles were reported (to reduce the potential for 
misattribution of striking and struck vehicles).  

The ADAS effectiveness for each crash type was assessed across three severity groups: (1) All Crashes: 
Crashes involving property damage, unknown injury level, or any injury severity; (2) Injury Crashes: 
Crashes involving any injury severity, including fatality; and (3) Serious Crashes: Crashes involving a 
serious injury or fatality (Table 6).  

Table 6: Crash reduction rates for FCW and AEB in front-to-rear collisions reported by PARTS study. 

ADAS Feature Crash Severity Point Estimate Lower Bound (5%) Upper Bound (95%) 

FCW 

All Crashes 16% 13% 20% 

Injury Crashes  19% 13% 25% 

Serious Crashes 21% -7% 41% 

FCW + AEB 

All Crashes 49% 48% 50% 

Injury Crashes  53% 51% 54% 

Serious Crashes 42% 33% 50% 

The study also attempted to estimate the contribution of different contextual factors influencing the 
effectiveness of ADAS (e.g., driver, vehicle, environmental, crash characteristics). Significant interactions 
between some driving conditions and FCW and AEB functionalities were reported for different crash 
severities (Table 7,Table 8). 

To address the uncertainty of driving conditions reported in the data, authors either removed sets of 
incidents from the overall analysis or considered certain conditions to be not present. The changes 
reported are:  

• Presence of alcohol or drugs: Unknown values were set to False. 

• Driver distraction: Unknown values were set to False. 

• Weather: Unknown and “Not Reported” values were removed. Only “Good” and “Bad” 
categories were used to describe weather, with the latter accounting for all adverse weather 
conditions reported (e.g., rainy, fog, snow, smoke, hail, sleet, severe crosswinds).  

• Road surface: Unknown and “Not Reported” values were removed. Only “Wet” and “Dry” 
categories were used to describe road surface conditions.  
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• Light conditions: Unknown values were removed. Only “Daylight”, “Dawn/Dusk” and “Dark” 
categories were used to describe light conditions, with the latter including lighted, unlighted, or 
unknown dark conditions. 

• Road alignment: Unknown and “Other” values were removed. Only “Intersection”, “Curved” or 
“Straight” were used as categories to describe road alignment.  

Note that no significant interactions were reported for driver states.  

Table 7: Reported FCW + AEB factor interactions on effectiveness for all crashes. 

Covariate Category Point Estimate Lower Bound (5%) Upper Bound (95%) 

Light Condition 

Daylight 50% 49% 52% 

Dawn/Dusk 44% 36% 48% 

Dark 42% 39% 44% 

Road Surface 
Weather 

Wet Roads 44% 42% 47% 

Dry Roads 49% 48% 51% 

Weather 
Good 49% 48% 51% 

Bad 42% 39% 45% 

Roadway 
Alignment 

Intersection 45% 43% 46% 

Curved Road 34% 29% 38% 

Straight Road 50% 48% 51% 

Sales Type 
Fleet Vehicles 43% 40% 45% 

Retail Vehicles 50% 48% 51% 

Driver Age 

14-24 52% 49% 54% 

25-34 52% 49% 54% 

35-54 50% 48% 51% 

55-64  44% 40% 47% 

65-74  42% 38% 46% 

75+  34% 27% 40% 
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Covariate Category Point Estimate Lower Bound (5%) Upper Bound (95%) 

Speed Limit 

<25mph 24% 16% 32% 

25-34mph 44% 42% 47% 

35-44mph 51% 49% 53% 

45-54mph 51% 49% 52% 

55-64 mph 50% 47% 53% 

>65mph 48% 45% 51% 

While no significant interactions were found for serious front-to-rear crashes, the study noted this may 
be related to the small sample size. Similarly, this study estimated the reduction in system-relevant 
crashes based on the presence of vehicles equipped with ADAS. However, this analysis does not account 
for variability of ADAS across manufacturers (e.g., ODD, driver warning implementation), whether the 
ADAS features were enabled by the driver at the time of the crash, nor the state of the driver prior to 
the crash, elements which are key to attribute the technologies’ contribution to collision avoidance 
scenarios.  

Table 8: Reported FCW + AEB factor interactions on effectiveness for injury crashes. 

Covariate Category Point Estimate Lower Bound (5%) Upper Bound (95%) 

Light Condition 

Daylight 55% 53% 57% 

Dawn/Dusk 49% 39% 56% 

Dark 45% 40% 49% 

Road Surface 
Weather 

Wet Roads 46% 41% 50% 

Dry Roads 54% 52% 56% 

Weather 
Good 54% 52% 56% 

Bad 44% 39% 49% 

Roadway 
Alignment 

Curved Road 38% 30% 45% 

Straight Road 54% 52% 55% 

Sales Type 
Fleet Vehicles 45% 41% 49% 

Retail Vehicles 54% 52% 56% 
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V2X technologies and applications  

In vehicle communication contexts, V2X refers to different information-sharing schemes between 
vehicles and their environment to improve road safety. This consists of a combination of V2V, V2I, and 
V2P, among other paradigms. At the current level of development, two approaches can be identified:  

(1) Driver Assistance Functions: This approach focuses on supporting human drivers by providing 
critical information to enhance safety and decision-making. These vehicle communications aim 
to complement and expand the current capabilities of driver assistance functions (ADAS), for 
instance, by providing reliable early warnings to drivers. Examples include alerts for blind spots 
and collision warnings (V2V), and real-time updates on traffic signals and speed limits (V2I).  

(2) Automated Driving Functions: This approach focuses on enhancing the single-vehicle 
perception capabilities of ADS-equipped vehicles. These functions are enabled by more data-
sharing schemes of varying complexity and detail (i.e., early vs late fusion). More complex 
cooperative driving automation (CDA) functionalities, such as platooning, rely on these 
communication schemes.  

V2X applications are supported by two primary network technologies. Initial developments relied on 
Dedicated Short-Range Communications (DSRC), facilitating direct local communication between 
vehicles (V2V) and traffic infrastructure (V2I). Table 9 provides an overview of the communication 
technologies defined in the standard SAE J2735 (11), identifying the main sender and receiver roles of 
vehicles (OBUs) and infrastructure (RSUs).  

Table 9: SAE J2735 DSRC Message Set Dictionary. 

 Technology Sender Receiver Example Application 

Basic Safety Message (BSM) OBU OBU 
Forward Collision Warning (FCW), Blind 
Spot Warning (BSW) 

Signal Phase and Timing (SPaT) RSU OBU Red Light Violation Warning (RLVW) 

Map Data Message (MAP) RSU OBU Intersection Movement Assist (IMA) 

Radio Technical Commission for 
Maritime Services (RTCM) 

RSU OBU Automated Vehicle Navigation 

Traveler Information Message 
(TIM) 

RSU OBU 
Location-based travel advisory 
information, e.g., Work Zone Safety 

Signal Request Message (SRM) OBU  RSU Emergency Vehicle Preemption (EVP) 

Signal Status Message (SSM) RSU OBU Emergency Vehicle Preemption (EVP) 

Road Safety Message (RSM) RSU OBU Dynamic Speed Limit Notifications 

In recent years, there has been a shift from DSRC to Cellular V2X (C-V2X) communications which can 
provide superior network performance, longer range, and increased reliability (37). While this transition 
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is expected to significantly enhance V2X-enabled functions by providing faster, it has also raised 
compatibility concerns regarding existing infrastructure and deployed DSRC-based vehicle safety 
functions.  

At lower levels of driving automation, the purpose of V2X communication technologies is to increase the 
information available for drivers to support real-time decision-making. Many of the technologies 
described in Table 9 provide information regarding driving conditions, i.e., weather events, with the 
objective of changing strategic-level decisions which may be better captured by surrogate safety 
metrics, such as headway and average speeds, rather than analyzing crash statistics. Other messages, 
such as BSM, can directly impact time-sensitive safety functions, such as FCW and AEB. In this regard, 
this work seeks to explore methods to determine how effective V2X-enhanced driver warnings can (1) 
extend the time available to the driver to perform an action, and (2) reduce the response time to 
external conditions in time-sensitive scenarios.  

Although data on the effectiveness of V2X technologies in reducing incident rates is still scarce, different 
methods can be leveraged to populate models such as the BBN presented in Figure 6 to provide a 
baseline, which may be further updated as more information is collected.  

Figure 6: Example of context representation BBN model. 

Findings from Connected Vehicle Pilot Deployment Program (38) provide some insights on incident 
reduction and driver behavior changes based on real driving conditions. However, the evidence of safety 
benefits remains inconclusive, partly due to the limited applicability of these studies and limited 
technological readiness, in particular for V2X-enhanced FCW functionalities. Accessible information on 
the safety impact of these technologies, as well as data on bandwidth capacities, and component or 
software reliability, remains primarily at research level, often collected through virtual simulations and 
driving simulator-based experiments (39). When assuming ideal communication-related conditions (i.e., 
when packets are sized properly, latency is kept low, and broadcast power is sufficiently high), rear-end 
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collision avoidance drive warnings are highly effective – up to a 99% incident reduction in some 
simulations (40). However, obtaining reliable estimations of the warning’s effectiveness under real 
driving conditions, such as varying weather conditions and traveling speeds, is still a challenge. In 
addition, many studies rely on driver reaction time models and not account for driver distraction or 
attitude towards the warnings, an active area of research in higher levels of driving automation 

technologies (41–43).  

For instance, the THEA CV Pilot program implemented several V2V and V2I applications deployed on 
private vehicles, transit, and pedestrian modes in a connected urban environment. Results suggest that 
driver reactions increased 9.93% when exposed to audio-visual FCW generated by the host vehicle 
based on remote vehicle information (as opposed to no driver warnings) (44). Yet, these estimations do 
not address the interactions between driver warnings generated from the host vehicle’s sensors and 
those generated from the received BSM.  

While studies have extensively examined the effects of traffic congestion on network latency and 
stability (45, 46), more focus is required to determine the impact of missed warnings and stale 
information on driver warning generation, the additional resources required to increase reliability (47, 
48), and the interplay with higher-level functions like FCW and AEB (49, 50). Moreover, thresholds for 
latency and communication reliability necessary for functions like driver warnings and AEB activation are 
not universal; these may heavily depend on environmental factors such as weather, road conditions, 
and traffic density (51). While many V2X studies focus on metrics like packet loss rates and average 
latency to evaluate communication quality, translating these metrics into tangible traffic safety benefits 
remains challenging due to the high human behavior and environmental variability. In driving simulator 
environments, findings suggest that V2X-enabled warnings without visible reasons – in which the cause 
of warning is beyond the decision sight distance of the driver – did not negatively impact reaction times 
or behavior. In this regard, designing adequate human-system interface and timing of the warnings is 
key to the success of the warning (39, 44). While driver’s reliance on early warnings enabled by V2X 
communications (i.e., extended warning lead time than achievable through local vehicle’s sensors) may 
negatively affect their situational awareness in the event the early warnings are not triggered (52), 
warnings targeted at reducing secondary risk crash for incidents beyond the decision distance of the 
driver may have a positive effect on overall traffic operation and safety (53).  

Scenario Modeling and Data Processing 

This section describes the system and scenario modeling logic, as well as the steps taken to process and 
analyze available crash datasets and available literature.  

Estimating Base Crash Probabilities 

A strategy to quantify the risk-reduction benefits of a technology through scenario-based models such 
as HCL consists of comparing the estimated probabilities of each outcome, where each end-state 
represents a series of success- and failure-related events. In this regard, it is not only relevant to 
estimate the probability of an injury crash vs. a property-damage crash or the relative reduction in 
crashes (e.g., through quasi-induced exposure methods), but also estimating the probability of avoiding 
a collision, accounting for the overall exposure. The implemented approach seeks to estimate the base 
crash probabilities from crash databases (such as FARS and CRSS). As the crash probability estimation 
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relies on the reported crash rates, it is key to compare these values relative to all crashes, all rear-end 
crashes, and all-rear end crashes that satisfy the criteria previously described. 

Table 10 and Table 11 provide data related to police-reported crashes between 2019-2022 as 
summarized in (54), containing information on fatal motor vehicle traffic crashes based on data from 
FARS and non-fatal motor vehicle traffic crashes from CRSS. Note that results from FARS, such as fatal 
crashes and fatalities, are actual counts, while results from CRSS, such as non-fatal crashes and people 
injured, are estimates.  

Table 10: Fatality and injury rates per licensed drivers and VMT. Adapted from summary of motor 
vehicle crashes: 2022 data (NHTSA, 2024). 

Year 
Licensed 

Drivers 

Injury Rate 

per 100,000 

Licensed 

Drivers 

Fatality Rate 

per 100,000 

Licensed 

Drivers 

Vehicle Miles 

Traveled 

(Millions) 

Injury Rate 

per 100 

million 

VMT 

Fatality 

Rate per 

100 million 

VMT 

2019 228,915,520 1,197  16.19 3,261,772 80.00 1.11 

2020 228,195,802 1,000 15.88 2,903,622 79.00 1.34 

2021 232,781,797 1,073  17.09 3,132,411 84.00 1.38 

Average 229,964,373 1,014  16.39 3,099,268 81.00 1.28 

Table 11: Police-reported traffic crashes, by crash severity. Adapted from summary of motor vehicle 
crashes: 2022 data (NHTSA, 2024). 

Crash Severity Fatal Injury PDO Total 

Year Number Percent Number Percent Number Percent Number 

2019 33,487 0.50% 1,916,344 28.40% 4,806,253 71.10% 6,756,084 

2020 35,935 0.70% 1,593,390 30.30% 3,621,681 69.00% 5,251,006 

2021 39,785 0.70% 1,727,608 28.30% 4,335,820 71.00% 6,103,213 

Average 36,402 0.60% 1,745,781 28.92% 4,254,585 70.48% 6,036,768 

The crash rates by crash severity presented in Table 12 are calculated based on data extracted from the 
CRSS databases. While these values underestimate the fatality and injury rates per 100 million VMT 
when compared to those reported by FARS (by 7.81% and 30.5% respectively, on average), CRSS also 
provides estimates on PDO crashes. 



QUANTIFYING SAFETY IMPACTS OF V2X-ENABLED TRAFFIC SYSTEMS 

 

38 

Table 12: Estimated crash rates by crash severity per 100 million VMT. 

Crash Severity Fatal Injury PDO Total 

Year Estimated Diff. Estimated Diff. Estimated Diff. Estimated 

2019 1.03 -25.4% 58.75 -26.6% 147.35 -- 207.13 

2020 1.24 -7.56% 54.88 -30.5% 124.73 -- 180.84 

2021 1.27 14.4% 55.15 -34.3% 138.42 -- 194.84 

Average 1.18 -7.81% 56.26 -30.5% 136.83 -- 194.27 

Most sources report that rear-end crashes comprise around 29%-30% of all crashes reported in the U.S 
(30). This is consistent with the average of 27.91% obtained from sampled data from CRSS shown in 
Table 13. On average, rear-end crashes accounted for 7.11% of fatalities, 21.92% of injuries, and 30.56% 
of PDO crashes. These crash statistics are further filtered to those occurring on non-junction roadways, 
excluding special jurisdictions and work zone areas, as well as those where only two vehicles were 
involved in front-to-rear collisions, excluding other road user-related incidents, such as those involving 
pedestrians and pedal cyclists, as well as those involving hit-and-run events. These values are presented 
in Table 14, where the sub-sampled rear-end collisions represented, on average, 0.76% of all fatalities, 
5.82% of all injuries, and 7.13% of all PDO crashes.  

Table 13: Rear-end crashes by crash severity sampled from CRSS. 

Crash 

Severity 
Fatal Injury PDO Total 

Year Number 
Percent 

(Fatalities) 
Number 

Percent 

(Injury) 
Number 

Percent 

(PDO) 
Number 

Percent 

(All) 

2019 2,363 7.06% 455,806 23.79% 1,596,903 33.23% 2,055,072 30.42% 

2020 2,441 6.79% 329,472 20.68% 1,037,665 28.65% 1,369,578 26.08% 

2021 2,971 7.47% 367,846 21.29% 1,291,605 29.79% 1,662,422 27.24% 

Average 2,592 7.11% 384,375 21.92% 1,308,724 30.56% 1,695,691 27.91% 

Table 15 provides a summary of the crash statistics for all three populations: all crashes, all-rear end 
crashes, and the sampled rear-end crashes. The proportion of fatality, injury, and PDO crashes for each 
population (in bold) were found to be statistically similar. Thus, these proportions were applied to the 
estimated crash rates by severity per 100 million VMT (Table 12) for the sampled rear-end crashes as 
shown in Table 16.  
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Table 14: Sub-sample of rear-end crashes by crash severity. 

Crash 

Severity 
Fatal Injury PDO Total 

Year Number 
Percent 

(Fatalities) 
Number 

Percent 

(Injury) 
Number 

Percent 

(PDO) 
Number 

Percent 

(All) 

2019 247 0.74% 116,336 6.07% 417,141 8.68% 533,724 7.90% 

2020 259 0.72% 86,118 5.40% 253,213 6.99% 339,590 6.47% 

2021 321 0.81% 103,402 5.99% 324,860 7.49% 428,583 7.02% 

Average 276 0.76% 101,952 5.82% 331,738 7.72% 433,966 7.13% 

Table 15: Summary of crash percentages by crash severity. 

Crash 

Severity 
All Crashes 

Rear-End Crashes Sample of Rear-End Crashes 

w/r All Crashes 

w/r Rear-

End 

Crashes 

w/r All 

Crashes 

w/r Rear-

End Crashes 

w/r 

Sample 

Fatality 0.60% 7.12% 0.15% 0.76% 0.02% 0.06% 

Injury 28.92% 22.02% 22.67% 5.84% 6.01% 23.49% 

PDO 70.48% 30.76% 77.18% 7.80% 19.56% 76.44% 

Total 100.00% 59.90% 100.00% 14.39% 25.59% 100.00% 

Table 16: Estimated rear-end crash rates by crash severity per 100 million VMT. 

Crash Severity Fatal Injury PDO Total 

All Crashes 1.18 56.26 136.83 194.27 

Rear-End Crashes 0.08 12.39 42.09 54.56 

Sampled Rear-End Crashes 0.01 3.29 10.67 13.96 

As detailed in Table 10, on average 𝑑 = 2.3 × 108 drivers accumulated 𝐷 = 3.1 × 1012 VMT per year, 
resulting in 𝑚 = 13,477 VMT per driver. The probability of at least one crash occurring per driver a year, 
by crash severity, for the three crash populations are estimated based on the crash rate per VMT 𝑟 as 
follows:  
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 𝑃(𝐶|𝑚, 𝑟) = 1 − exp−𝑚×𝑟 (1)  

Table 17 presents the estimated annual crash probabilities per driver and the total estimated crashes for 
each population by crash severity. These estimates produce crash numbers similar to those reported in 
Table 11, Table 13, and Table 14, and will be used to scale end-state probabilities in the HCL model.  
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Table 17: Estimated crash probability per crash severity. 

Population All Crashes Rear-End Crashes Sampled Rear-End Crashes 
Equivalent KABCO 

Severity 

Number 

Percent (All) 
Crash Severity Probability 

Estimated 

Crashes 

(Diff.) 

Probability 

Estimated 

Crashes 

(Diff.) 

Probability 
Estimated 

Crashes (Diff.) 

Total 2.58E-02 
6,020,983 
(0.26%) 

7.33E-03 
1,690,995 
(0.28%) 

1.88E-03 
432,769 
(0.28%) 

K, A, B, C, O, 
Unknown 

7.90% 

Fatal 1.59E-04 
36,513  
(-0.30%) 

1.13E-05 
2,600 
(-0.30%) 

1.20E-06 
277 
(-0.30%) 

K 6.47% 

Non-Fatal 2.58E-02 
5,984,470 
(0.26%) 

7.32E-03 
1,688,396 
(0.28%) 

1.88E-03 
432,492 
(0.28%) 

A, B, C, O, 
Injured 
(Unknown) 

7.02% 

Injury 7.55E-03 
1,743,651 
(0.12%) 

1.67E-03 
383,906 
(0.12%) 

4.43E-04 
101,828 
(0.12%) 

A, B, C, 
Injured 
(Unknown) 

7.13% 

PPO 1.83E-02 
4,240,819 
(0.32%) 

5.66E-03 
1,304,490 
(0.32%) 

1.44E-03 
330,665 
(0.32%) 

O  

No Collision 9.74E-01 -- 9.93E-01 -- 9.98E-01 -- --  
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Model Variables and Assumptions 

This section discusses the processing steps to populate the HCL models based on data extracted from 
the databases discussed in the previous section. While data entries of police-reportable incidents (FARS, 
CRSS) contain detailed information about the crash conditions, potential causes, and consequences, the 
following analysis relies on a sub-section of variables common to the FCW and AEB studies. The general 
approach is to select a sample of categorical variables, such as weather or road conditions, to estimate 
how these conditions affect the probability of a crash occurring.  

In general, driving environment statistics reveal that most crashes occur on straight roads, dry surfaces, 
in clear weather, and during daylight hours (55). 

FARS Dataset Filtering 

FARS data are made available to the public in Statistical Analysis System (SAS) data files as well as 
comma-separated values (CSV) files. For the current collection year, there are 30 data files containing 
information collected from police crash reports, death certificates, state vehicle registration files, 
emergency medical service reports, among others. Four main data files from the FARS dataset were 
used for this analysis. These consist of the “Accident”, “Vehicle”, “Person” and the “Distract”, as detailed 
in the FARS manual9:  

• Accident – (1975-current): This data file contains information about crash characteristics and 
environmental conditions at the time of the crash. There is one record per crash. 

• Vehicle – (1975-current): This data file contains information describing the motor vehicles in-
transport and the drivers of motor vehicles in-transport who are involved in the crash. There is 
one record per motor vehicle in-transport.  

• Person – (1975-current): This data file contains information describing all people involved in the 
crash including motorists (i.e., drivers and passengers of motor vehicles in-transport) and non-
motorists (e.g., pedestrians, pedal cyclists, and occupants of motor vehicles not in-transport). It 
provides information such as age, sex, vehicle occupant restraint use, and injury severity. There 
is one record per person. 

• Distract – (2010-current): This data file contains information about driver distractions. Each 
distraction is a separate record. There is at least one record for each driver of a motor vehicle in-
transport. 

Table 18 provides an overview of the selected data elements describing the conditions of a motor 
vehicle crash. The resulting dataset was merged according to the instructions provided in the FARS 
manual based on the unique case number (ST_CASE) and vehicle number (VEH_NO). A subset of these 
data elements were implemented for the current analysis (refer to Table 1).  Additional processing was 
performed to simplify the data entries described in the following sections.  

 
9 National Center for Statistics and Analysis. (2024, April). Fatality Analysis Reporting System analytical user’s 
manual, 1975-2022 (Report No. DOT HS 813 556). National Highway Traffic Safety Administration. 
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Table 18: Selected FARS data types and scenario filters. 

File Data Element ID Data Element Name Filter Applied 

Accident 

ST_CASE 
Consecutive Number (Unique Case 
Number) 

-- 

VE_FORMS 
Number of Motor Vehicles In-Transport 
(MVIT) 

Two vehicles involved in the 
crash 

PVH_INVL Number of Parked/Working Vehicles 
No parked or working 
vehicles 

SP_JUR Special Jurisdiction No Special Jurisdiction 

HARM_EV First Harmful Event Motor Vehicle In-Transport 

MAN_COLL 
Manner of Collision of the First Harmful 
Event 

Front-to-Rear 

RELJCT1 
Relation to Junction—Within Interchange 
Area 

Not Within an Interchange 
Area 

RELJCT2 Relation to Junction—Specific Location Non-Junction 

TYP_INT Type of Intersection Not an Intersection 

REL_ROAD Relation to Trafficway On Roadway 

WRK_ZONE Work Zone None 

LGT_COND Light Condition -- 

WEATHER Atmospheric Conditions -- 

Vehicle 

ST_CASE 
Consecutive Number (Unique Case 
Number) 

-- 

VEH_NO Vehicle Number -- 

HIT_RUN Hit-and-Run No Hit-and-Run 

ROLLOVER Rollover No Rollover 

SPEEDREL Speeding Related -- 

VSPD_LIM Speed Limit -- 

VALIGN Roadway Alignment -- 



QUANTIFYING SAFETY IMPACTS OF V2X-ENABLED TRAFFIC SYSTEMS 

 

44 

File Data Element ID Data Element Name Filter Applied 

VSURCOND Roadway Surface Conditions -- 

P_CRASH1 
Pre-Event Movement (Prior to 
Recognition of Critical Event) 

-- 

P_CRASH3 Attempted Avoidance Maneuver -- 

Person 

ST_CASE 
Consecutive Number (Unique Case 
Number) 

-- 

VEH_NO Vehicle Number -- 

PER_NO Person Number -- 

AGE Age -- 

PER_TYP Person Type 
Driver of a Motor Vehicle 
In-Transport 

INJ_SEV Injury Severity -- 

DRINKING Police Reported Alcohol Involvement -- 

DRUGS Police Reported Drug Involvement -- 

Distract 

ST_CASE 
Consecutive Number (Unique Case 
Number) 

-- 

VEH_NO Vehicle Number -- 

DRDISTRACT Driver Distracted By -- 

 

Light Conditions 

Police-reported crashes retrieved from FARS and CRSS provide detailed information regarding the light 
conditions. Nine categories are defined in FARS: Daylight, Dark (Not Lighted, Lighted, Unknown Lighting), 
Dawn, Dusk, as well as Other, Not Reported, or Reported as Unknown.  

To incorporate the crash reduction rates reported by PARTS, the light condition variable is simplified as:  

• Daylight 

• Dawn/Dusk 

• Dark 
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Given the sample data queried from FARS (Table 19), “Unknown” light conditions account for 4.3% and 
are removed from further analysis.  

Table 19: Sampled crashes by light condition. 

Light Conditions Crashes Relative Frequency Adjusted Relative Frequency 

Dark 38,888 0.525 0.526 

Daylight 31,895 0.431 0.431 

Dusk/Dawn 3,167 0.043 0.043 

Unknown 91 0.001 -- 

Grand Total 74,041 1.000 1.000 

 

Weather Conditions 

Police-reported crashes retrieved from FARS and CRSS provide a detailed report about the weather 
conditions at the moment of the crash. Thirteen categories are defined in FARS, such as: Clear (no 
adverse atmospheric conditions), Cloudy, Rain (including mist, sleet, hail), Snow (including blowing 
snow), Fog, Smog, or Smoke, Severe Crosswinds, Blowing Sand, Soil, or Dirt, and Unknown.  

To incorporate the crash reduction rates reported by PARTS, the weather variable is simplified as:  

• Clear 

• Adverse (consisting of all other weather conditions) 

Given the sample data queried from FARS (Table 20), “Unknown” weather conditions account for 3.5% 
and are removed from further analysis.  

Table 20: Sampled crashes by weather condition. 

Weather Conditions Crashes Relative Frequency Adjusted Relative Frequency 

Clear 56,776  0.767 0.795 

Adverse 14,667  0.198 0.205 

Unknown 2,598  0.035 -- 

Grand Total 74,041 1.000 1.000 
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Posted Road Speed Limit 

The initial approach was to classify roads by speed, high or low, depending on the reported function of 
the road, i.e., interstate or local. However, PARTS reports CMF values per posted speed limits of the 
road (Table 21). Similarly, FARS reports the posted speed limits of the road as a continuous variable (as 
opposed to categorical). Considering the alternative approaches, a mixed strategy was chosen by 
categorizing roads by their posted speed limit (Table 22) as:  

• High speed (above 45 mph) 

• Low speed (below 45 mph) 

As these values are taken from road infrastructure information, there are a minimal number of 
unknowns compared to other police-reported variables. Thus, all data samples were used to estimate 
the scenario exposure. 

Table 21: Sampled crashes by road speed limit. 

Road Speed Crashes Relative Frequency 

Over 65 24,731 0.334 

55-64 20,831 0.281 

45-54 12,831 0.173 

35-44 10,716 0.145 

25-34 4,558 0.062 

Under 25 374 0.005 

Grand Total 74,041 1.000 

Table 22: Sampled crashes by adjusted road speed limit. 

Road Speed Crashes Relative Frequency 

High Speed 58,393 0.789 

Low Speed 15,648 0.211 

Grand Total 74,041 1.000 

 

Road Surface 

Police-reported crashes retrieved from FARS and CRSS provide detailed information regarding the road 
conditions. Twelve categories are defined in FARS: Dry; Wet; Snow; Ice/Frost; Sand; Water (Standing or 
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Moving); Oil; Other; Slush; Mud, Dirt, or Gravel; as well as those related to a Non-Trafficway Are or 
Driveway Access, Not Reported, and Reported as Unknown.  

To incorporate the crash reduction rates reported by PARTS, only the following two conditions are 
considered:  

• Dry 

• Wet 

Given the sample data queried from FARS (Table 23), “Unknown” and “Other” road surface conditions 
account for 2.4% and are removed from further analysis.  

Table 23: Sampled crashes by road surface condition. 

Road Surface Crashes Relative Frequency Adjusted Relative Frequency 

Dry 64,663 0.873 0.894 

Wet 7,644 0.103 0.106 

Other 1,163 0.016 -- 

Unknown 571 0.008 -- 

Grand Total 74,041 1.000 1.000 

 

Injury Severity 

The FARS dataset follows the KABCO severity rating scale which includes the following categories: No 
Apparent Injury (O), Possible injury I, Suspected Minor Injury (B), Suspected Serious Injury (A), Fatal 
Injury (K), Injured, Severity Unknown (U), Died Prior to Crash, and Unknown/Not Reported. Note that 
the numbers of crashes in the latter three categories are usually small.  

The PARTS analysis considers the following categories of crash severities:  

• All crashes (K, A, B, C, O, Unknown) 

• Injury Crashes (K, A, B, C) 

• Serious Crashes (K, A) 

An intermediate approach is adopted in this work. Table 24 presents the distribution of crashes by crash 
severity present in the sampled rear-end crash scenarios. As the FARS database primarily reports 
fatalities (as opposed to lower risk crashes), the sample is significantly skewed towards High Severity 
Crashes (K, A). The number of crashes with unknown severity amount to 2.2% and thus are removed 
from future analysis. Table 25 and Table 26 present the distribution according to the denominations 
used in FARS and PARTS, respectively.  
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Table 24: Sampled crashes by crash severity. 

Severity Crashes Relative Frequency Adjusted Relative Frequency 

High Severity (K,A) 40,026 0.541 0.553 

Moderate Severity (B,C) 11,430 0.154 0.289 

Minor Severity (O) 20,955 0.283 0.158 

Unknown 1,630 0.022 -- 

Grand Total 74,041 1.000 1.000 

Table 25: Sampled crashes by crash severity (PARTS equivalent). 

Severity Crashes Relative Frequency 

All Crashes 74,041 1.000 

Injury Crashes (K, A, B, C) 51,456 0.695 

Serious Crashes (K, A) 40,026 0.541 

Other Crashes (O, U) 22,585 0.305 

Grand Total 74,041 1.000 

Table 26: Sampled crashes by crash severity (CRSS equivalent). 

Severity Crashes Relative Frequency Adjusted Relative Frequency 

PDO Crash 20,955 0.283 0.289 

Injury Crash 17,055 0.230 0.235 

Fatal Crash 34,546 0.467 0.476 

Unknown 1,485 0.020 -- 

Grand Total 74,041 1.000 1.000 

 

Driver Model 

The state of the driver has been incorporated as a major factor contributing to motor vehicle crashes 
using a variety of methods, for instance, relying on reaction times and the impact of distraction tasks. 
Given the available granularity of the data, models such as the one presented in Figure 7 can be 
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employed. This represents a conceptual BBN model for driver’s state, including the effect of the driver’s 
state impact the probabilities of success in detecting (I-Phase), selecting a strategy (D-Phase), and 
correcting implementing an action (A-Phase).  

Figure 7: Example of simplified driver BBN model. 

While databases such as FARS may be employed to collect data on distracted or impaired driving, more 
sophisticated discussions on Performance Influencing/Shaping Factors (PIF/PSF) used in Human 
Reliability Analysis (HRA) may lead to more complex models (56). These model-based approaches may 
play a significant role as means to explain the effect of human-system interactions in the decrease – or 
increase – of incidents where ADAS features are involved (26).  

To incorporate police-reported information available in FARS and CRSS databases, variables related to 
the driver state are extracted and analyzed. 

Driver State 

Two variables are used to describe the driver’s state in PARTS. These are (1) distraction and (2) 
impairment due to alcohol or drugs. This is a simplified approach compared to the police-reported 
information available in the FARS dataset, which includes more information about impairment (including 
drowsiness), and the reported causes of distraction, as well as additional information of the drugs and 
alcohol.  

The police-reported alcohol and drug involvement data elements were combined. The following 
categories are considered for the initial model implementation:  

• Driver Distraction: Yes/No. All data entries except for “Not Distracted” and “Unknown” were 
considered to indicate that the driver was distracted at the moment of the crash.  
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• Driver Impaired (Alcohol, Drugs): Yes/No. If either alcohol or drugs were reported, the driver is 
considered to have been impaired at the moment of the crash. If either alcohol or drug presence 
was not reported or unknown, then these cases were considered as negative.  

However, variables not related to alcohol or drug consumption have a high number of unknowns. As 
shown in Table 27, the distracted drivers account for only 7.5% of the crashes in the selected sample, 
while in comparison, the state of the driver was unknown in 62.4% of the cases. Impaired driving 
(alcohol and/or drugs) data is more reliable, with unknown accounting for 28.9% of the samples (Table 
28).  

Table 27: Sampled crashes by driver distraction. 

Distracted Crashes Relative Frequency Adjusted Relative Frequency 

Not Distracted 22,302 0.301 0.801 

Distracted 5,548 0.075 0.199 

Unknown 46,191 0.624 -- 

Grand Total 74,041 1.000 1.000 

Table 28: Sampled crashes by driver impairment. 

Impaired Crashes Relative Frequency Adjusted Relative Frequency 

Not Impaired 37,772 0.510 0.718 

Impaired 14,867 0.201 0.282 

Unknown 21,402 0.289 -- 

Grand Total 74,041 1.000 1.000 

 

Driver Actions 

The initial approach considered two variables reported as precrash characteristics in the FARS datasets. 
While these variables are not reported in the PARTS study, it is considered that these could provide 
important contextual information regarding the driver strategy (D) and action implemented to avoid the 
crash (A). These are:  

• Speeding: Whether the driver speeding was related to the crash occurrence as reported by law 
enforcement. FARS includes detailed information about whether the speeding was related to 
the driver exceeding the speed limit or driving too fast for the road conditions. This was 
simplified to Yes/No categories. Given the sample data queried from FARS (Table 29), 
“Unknown” speeding conditions account for 4.4% and are removed from further analysis.  
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• Avoidance Action: This data element identifies the attribute that best describes the movements 
or actions taken by the driver in response to a “critical precrash event,” i.e., suspected triggering 
event contributing to the crash. This includes information about whether the driver braked, 
steered, or accelerated and thus contains key information.  

However, due to the high number of unknowns (over 68%) this variable is not considered in the first 
implementation of the model. These values might be revisited in future ESD models considering the 
following categories: none (including accelerating), braking, and steering.  

Table 29: Sampled crashes by driver speeding. 

Speeding Crashes Relative Frequency Adjusted Relative Frequency 

No 53,665 0.725 0.758 

Yes 17,112 0.231 0.242 

Unknown 3,264 0.044 -- 

Grand Total 74,041 1.000 1.000 

Scenario Exposure Derivation 

This work implements a BBN model to capture the effect of environmental conditions and other 
contextual elements over crash scenarios. This corresponds to the lowest level of the HCL models 
developed and leverages the categorical variables extracted from the FARS dataset. Models such as the 
one presented in Figure 8 can be constructed, where the relationship between different variables can be 
justified based on statistically significant interactions found through covariate analysis. Given the 
current data availability and assumptions, the initial model is simplified as presented in Figure 9.  

The node “Scenario Exposure” collects key contextual information from Weather, Light, and Road 
Surface Conditions. Additional inputs and external events, such as communication service provider 
failures and traffic levels, may be included to better estimate the impact on V2X communications 
(“Connectivity”), vehicle’s detection capabilities (“Sensor Effectiveness”), driving maneuver complexity 
(“Vehicle Control”), and overall driver reaction (“Driver Action”).  

The model in Figure 9 aims to answer the following question: (a) given all these environmental 
conditions, what is the exposure to a crash scenario? This question is represented by equation (4):  

𝑃(𝐶𝑖|𝑆𝑗) =
𝑃(𝑆𝑗|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑆𝑗)
 (2)  

where 𝑆𝑗 is the condition 𝑗, e.g., weather conditions, and 𝐶𝑖 represents a crash of severity 𝑖, e.g., an 

injury crash. However, crash statistics such as those collected in FARS detail the conditions present at 
the moment of the crash. Thus, this data source provides information on (b) given that there was a 
crash, what is the probability of having certain conditions present? This question is formulated by 

𝑃(𝑆𝑗|𝐶𝑖) where, as a first approach, the relative frequency of the conditions at the moment of the crash 
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are used to estimate the corresponding conditional probability. The conditional probabilities derived 
from the FARS dataset are summarized in Table 30.  

Figure 8: Initial scenario exposure BBN model. 
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Table 30: Summary of prior conditional probabilities. 

Variable Category Conditional Probability P(S|C) 

Distraction 
Distracted 0.199 

Not Distracted 0.801 

Impairment 
Impaired 0.282 

Not Impaired 0.718 

Light Cond 

Dark 0.526 

Daylight 0.431 

Dawn/Dusk 0.043 

Road Speed 
High Speed 0.789 

Low Speed 0.211 

Speeding 
Speeding 0.242 

Not Speeding 0.758 

Weather 
Clear 0.795 

Adverse 0.205 

Road Surface 
Dry 0.894 

Wet 0.106 
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Figure 9: Proposed scenario exposure BBN model. 

In order to estimate the probability of a crash occurring given certain conditions, the conditional 
probability tables of the intermediate and output nodes are derived. Intermediate nodes, such as 
“Driver State,” “Driver Detection Task” and “Vehicle Control” are derived from the FARS dataset 
described in the previous sections, as are the output nodes “Driver Action Task” and “Scenario 
Exposure”. Note that these probabilities reflect the relative frequency of conditions occurring rather 
than implying their contribution to the crash occurring. This is a conservative approach, considering the 
presence of each factor as an indication of a crash occurring.  

Conditional probabilities can be further refined by conducting a sensitivity analysis based on the model 
shown in Figure 10, representing equation (4). By setting the evidence of different nodes, i.e., one of the 
input node states is known, the distribution of crashes by crash severities may change. An example is 
presented in Table 31. This procedure is not implemented at the current stage of the model.  
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Figure 10: Prior conditional probabilities model. 

Table 31: Example of crash contributing factors sensitivity analysis. 

Crash Severity 

P(Ci|Sj=Driver 

Impaired, Dark 

Light 

Conditions, High 

Speed Roads) 

P(Ci|Sj=Driver 

Distracted, Dry 

Surface Conditions, 

Driver Speeding) 

P(Ci|Sj=Driver Distracted, 

Wet Surface Conditions, Low 

Speed Roads) 

High Severity (K, A) 0.60 0.52 0.30 

Moderate Severity (B, C) 0.26 0.30 0.15 

Minor Severity (O) 0.14 0.17 0.40 

Unknown (U) 0.00 0.01 0.10 
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Driver State 

This node represents the driver’s Information Stage, referring to the tasks the driver performs when 
receiving information from external sources. In this model, it is used to represent the success or failure 
of the driver to monitor their own state as well as driver warnings (i.e., the environment “internal” to 
the vehicle). The probability of the driver being available to receive information is dependent on their 
attention and impairment state.  

The relative frequency of the conditions present at the moment of the crash are used to populate the 
“Not Available” state of the node resulting in the conditional probability Table 32.  

Table 32: BBN model - conditional probability table for driver state. 

Distracted 

Year 
Impaired 

Driver State 

Not Available Available 

Attentive 
No 0.59 0.41 

Yes 0.06 0.94 

Distracted 
No 0.32 0.68 

Yes 0.03 0.97 

 

Driver Detection Task 

This node represents a secondary aspect of the driver’s Information Stage, but with respect to the 
environment “external” to the vehicle. Thus, the probability of success of the driver detecting an 
obstacle while driving is affected by the driver’s state (“Available” vs. “Not Available”), the weather and 
light conditions.  

The relative frequency of the conditions present at the moment of the crash are used to populate the 
“Failure” state of the node resulting in the conditional probability Table 33.  

Table 33: BBN model - conditional probability table for driver detection task. 

Driver State Weather Light Conditions 

Driver Detection Task 

Success Failure 

Driver Not 
Available 
 

Clear 

Daylight 0.92 0.08 

Dark 0.89 0.11 

Dawn/Dusk 0.99 0.01 
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Driver State Weather Light Conditions 

Driver Detection Task 

Success Failure 

Adverse 

Daylight 0.98 0.02 

Dark 0.97 0.03 

Dawn/Dusk 1.00 0.00 

Driver 
Available 

Clear 

Daylight 0.74 0.26 

Dark 0.40 0.30 

Dawn/Dusk 0.97 0.03 

Adverse 

Daylight 0.93 0.07 

Dark 0.92 0.08 

Dawn/Dusk 0.99 0.01 

 

Vehicle Control 

This node is used as a proxy to represent the driving task complexity. The probability of experiencing a 
high or low driving task complexity is dependent on the road speed (“High Speed” vs. “Low Speed”) and 
surface (“Dry” vs. “Wet”). Dependent on the data available, many other factors may be included in this 
node, including additional information on the road’s geometry (e.g., curve vs. straight), function (e.g., 
intersection vs not an intersection), and traffic density (e.g., high traffic vs low traffic). 

The relative frequency of the conditions present at the moment of the crash are used to populate the 
“High Complexity” state of the node resulting in the conditional probability Table 34.  

Table 34: BBN model - conditional probability table for vehicle control. 

Road Speed Road Surface 

Vehicle Control 

High Complexity Low Complexity 

High Speed 
Dry 0.70 0.30 

Wet 0.08 0.92 

Low Speed 
Dry 0.19 0.81 

Wet 0.02 0.98 
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Driver Action Task 

This node represents the driver’s Action Stage, referring to the tasks the driver performs in response to 
external stimuli after selecting a strategy (Decision Stage). As the true state of the “Decision Stage”, i.e., 
the driver selecting a correct strategy given the road conditions requires data not readily available from 
the crash datasets, the information related to “Speeding” is used to represent the driver’s overall 
strategy prior to the crash. This is combined with the perceived driving task complexity represented by 
the “Vehicle Control” node, and whether the driver detected the obstacle on the road (“Driver Detection 
Task”).  

The relative frequency of the conditions present at the moment of the crash are used to populate the 
“Failure” state of the node resulting in the conditional probability Table 35.  

Table 35: BBN model - conditional probability table for driver action task. 

Driver 

Detection 

Task 

Speeding Vehicle Control 

Driver Action Task 

Success Failure 

Success 

No 
Speeding 

High Complexity 0.94 0.06 

Low Complexity 0.55 0.45 

Speeding 
High Complexity 0.99 0.01 

Low Complexity 0.88 0.12 

Failure 

No 
Speeding 

High Complexity 0.96 0.04 

Low Complexity 0.79 0.21 

Speeding 
High Complexity 0.98 0.02 

Low Complexity 0.91 0.09 

 

Initiating Event Exposure  

This output node represent the Initiating Event’s probability of occurrence, fundamental to the 
calibration of the ESD models. While many other factors may be included in this node related to road’s 
geometry, road function and traffic density, the weather, light and road surface conditions are used to 
represent the scenario’s exposure.  

The relative frequency of the conditions present at the moment of the crash are used to populate the 
“True” state of the node resulting in the conditional probability Table 36.  
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Table 36: BBN model - conditional probability table for scenario exposure. 

Weather Light Conditions  Road Surface 

Driver Action Task 

Success Failure 

Clear 

Daylight 
Dry 0.25 0.75 

Wet 0.02 0.98 

Dark 
Dry 0.07 0.93 

Wet 0.01 0.99 

Dawn/Dusk 
Dry 0.31 0.69 

Wet 0.02 0.98 

Adverse 

Daylight 
Dry 0.08 0.92 

Wet 0.01 0.99 

Dark 
Dry 0.03 0.97 

Wet 0.00 1.00 

Dawn/Dusk 
Dry 0.01 0.99 

Wet 0.00 1.00 

 

Estimated Nodes  

Additional nodes have been included to represent the effect of weather on hardware and software 
reliability of vehicle components.  

• Connectivity: This output node represents the impact of adverse weather conditions on overall 
network reliability. The purpose of this node is to quantify the event of adverse weather 
impacting the Communication Service Providers (CSPs) on the specific corridor where the 
collision may potentially occur. The high reliability values imply that communication stability is 
only temporarily and intermittently affected, and that extended network failures are rare events 
(Table 37).  

• Sensor Effectiveness: This output node represents the impact of adverse weather conditions on 
overall sensor (Table 38). Given the high variety of sensors available, including RGB cameras, 
radars, LiDARs, etc., the values of this output node are envisioned as a user input in future 
iterations of the model.  
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Table 37: BBN model - conditional probability table for v2x connectivity. 

Weather 

Connectivity 

Available Not Available 

Clear 0.99 0.01 

Adverse 0.93 0.07 

Table 38: BBN model - conditional probability table for sensor reliability. 

Weather 

Sensor Reliability 

Operational State Failed State 

Clear 0.98 0.02 

Adverse 0.75 0.25 

 

Modeled Scenarios and Estimated CMF 

To study how V2X can impact scenario development, two high-level collision avoidance applications are 
selected. Each represents different levels of driving automation, driver roles, and use of V2X 
information.  

The general scenario considers a driver encountering a slow or stopped vehicle on a straight road (non-
intersection). The driver must detect the obstacle and take the appropriate action (in this case, 
breaking) to avoid a collision. The following scenarios are considered:  

• Scenario 1: No Driver Assistance Systems. This is the base case which serves to compare all 
other technologies involved.  

• Scenario 2: Driver Assisted by Local FCW System. In this scenario, the driver is assisted by a local 
FCW system based on host vehicle’s sensors.  

• Scenario 3: Driver Assisted by Local AEB System. In this scenario, the driver is assisted by a local 
FCW system based on host vehicle’s sensors and supported by AEB features.  

• Scenario 4: Driver Assisted by V2X-enhanced FCW. This scenario builds upon Scenario #2, such 
that the FCW system is enhanced by V2V or V2I communications.  

• Scenario 5: Driver Assisted by V2X-enhanced FCW and AEB. This scenario builds upon Scenario 
#3, such that the FCW system is enhanced by V2V or V2I communications and the driver is 
supported by AEB features. 
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Each of these scenarios can lead to the following end-states:  

1. No Collision: The driver is successful in avoiding a collision with an obstacle on the road.  

2. Property-Damage Only (PDO): A collision occurs, but at a lower speed resulting in property 
damage.  

3. Injury Crash: merges injury from low-to-high severity and fatality crashes.  

The logic of each scenario is briefly described in the following sections. Scenarios #4 and #5 are 
implemented in the MoPRA tool. Details of the model parameters can be found in the Appendix. 

Scenario 1: No Driver Assistance Systems 

This case is structured around the following high-level events:  

• The driver detects an object or obstacle on the road and brakes in response. The success of this 
event implies that the driver detected the obstacle and braked in response.  

• The braking action is sufficient to avoid a collision with the obstacle. The success of this event 
implies that the driver braked sufficiently given the road conditions and that no failure in the 
vehicle prevented braking from occurring. 

This scenario is depicted in Figure 11, where all end-states are directly related to the driver’s actions. 
Each key event is supported by a simple FT model (Figure 12), depicting potential causes of the driver 
failing to brake or that after braking, a slow speed collision is not avoided. Model parameters can be 
found in Table 51. Note that vehicle brake related failure values are estimated from the sampled rear-
end crash data retrieved from FARS. 

Figure 11: Scenario #1 – no driver assistance systems. 

Table 39 provides the point estimate and the 5%-95% confidence intervals for the probabilities for the 
end-states represented in Scenario #1 (P1). The obtained probabilities are compared to the probabilities 
of PDO, Injury, and All Crashes for all three populations analyzed: all motor-vehicle crashes (P2), rear-
end crashes (P3), and the sub-sample of rear-end crashes (P4) (Table 40). The distribution of obtained 
crashes severities are, in general, consistent with the populations containing all crashes (1%) and all 
rear-end crashes (0.18%). 
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(a) FT#1 – Driver fails to brake (event 5a failure). 

(b) FT#2 – Braking does not avoid a collision (event 5b failure). 

Figure 12: Scenario #1 – driver related fault trees FT#1-2. 
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Table 39: Scenario #1 - estimated crash probabilities per crash severity. 

End-State 

Estimated Prob. 

P1(C) Norm. Mean Median 
5th 

Percentile 

95th 

Percentile 

No Collision 
(Total) 

9.748E-01 -- -- -- -- -- 

No Collision 
Scenario 

8.788E-01 -- 8.764E-01 8.924E-01 7.547E-01 9.634E-01 

No Collision 
(Driver) 

9.499E-02 7.837E-01 9.337E-02 7.769E-02 1.569E-02 2.016E-01 

PDO Crash 
(Driver) 

1.923E-02 1.587E-01 2.090E-02 1.077E-02 4.700E-04 8.544E-02 

Injury Crash 
(Driver) 

7.017E-03 5.790E-02 7.318E-03 6.373E-03 1.524E-03 1.530E-02 

All Crashes 
(Driver) 

2.625E-02 2.166E-01 2.822E-02 1.714E-02 1.994E-03 1.007E-01 

Table 40: Reference crash probabilities per crash severity. 

End-State 

All Crashes Rear-End Crashes 
Rear-End Crashes 

(Sample) 

P2(C) Diff.% P3(C) Diff.% P4(C) Diff.% 

No Collision 
(Total) 

0.974 -0.07% 0.993 -1.80% 0.998 -2.34% 

No Collision 
Scenario 

-- -- -- -- -- -- 

No Collision 
(Driver) 

-- -- -- -- -- -- 

PDO Crash 
(Driver) 

0.018 5.24% 0.020 -4.81% 0.025 -23.89% 

Injury Crash 
(Driver) 

0.008 -9.02% 0.006 17.00% 0.008 -10.10% 
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End-State 

All Crashes Rear-End Crashes 
Rear-End Crashes 

(Sample) 

P2(C) Diff.% P3(C) Diff.% P4(C) Diff.% 

All Crashes 
(Driver) 

0.026 1.01% 0.026 0.18% 0.033 -20.63% 

However, the model underestimates the number of crashes observed for the sub-sample of rear-end 
crashes (where higher severity crashes are over-represented in comparison) by up to 20%. Nonetheless, 
the proportion of PDO-crashes and injury crashes are consistent with the crash numbers estimated for 
this population (Table 41), thus conclusions related to the relative impact of technologies on end-state 
probabilities may still be derived. Note that the end-state “No Collision” contains information regarding 
the exposure to the scenario, as well as the driver’s contribution to avoiding a collision based on the 
modeling parameters. Thus, the normalized crash probabilities per crash severity are also calculated 
(Norm) and used for further comparisons with Scenarios #2 and #3. 

Table 41: Comparison of proportion of crashes by crash severity. 

Crash Severity 
Estimated Number of 

Crashes (Sample Population) 

Proportion  

(Sample Population) 

Proportion 

(Scenario #1) 

All Crashes 1,301,897    

Fatality Crashes 827  0.06% -- 

Injury and Fatality 
Crashes 

305,856  23.56% 26.73% 

PDO Crashes 995,214  76.44% 73.27% 

 

Scenario 2: Driver Assisted by Local FCW System  

The second scenario consists of a driver supported by an FCW system that relies on the host vehicle’s 
local sensors to detect the presence of an obstacle on the road and determine the probability of an 
imminent crash given the current vehicle speeds.  

This case is structured around the following high-level events:  

• The obstacle is detected by vehicle sensors. The detection of the object triggers an alarm for the 
driver.  

• The driver brakes in response to detecting the obstacle. The success of this event implies that 
the driver detected the alarm and braked in response.  
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• The braking action is sufficient to avoid a collision with the obstacle. The success of this event 
implies that the driver braked sufficiently given the road conditions and that no failure in the 
vehicle prevented braking from occurring. 

Depending on system failures, three different branches are distinguished (see Figure 13):  

• Branch 1: Collision avoidance is supported by single-vehicle FCW assisted driver warnings.  

• Branch 2: No additional collision avoidance assists the driver.  

This scenario is depicted in Figure 13, where the end-states can be associated with whether the FCW 
system was triggered or not. Thus, the new branch of the system is added to the base ESD developed for 
Scenario #1. The new events depict the effectiveness of the FCW system in assisting the driver to avoid 
the collision.  

Figure 13: Scenario #2 – driver assisted by local FCW system. 

The failure of event “2b. Obstacle detected (FCW)” is described by the FT model presented in Figure 14. 
As an initial approach, the failure of this event is modeled based on IDA phases described. Thus, whether 
the driver received the FCW depends on whether the obstacle is detected (I-phase), if the warning is 
triggered (D-phase), and whether it is communicated to the driver (A-phase). These failures are related 
to sensor reliability, FCW missed alarm rates, and HMI hardware reliability (either acoustic or visual 
alarms). While sensor and HMI reliability values have been included for calibration purposes, estimated 
FCW missed alarm rates (false negatives) between 0.73%-3.72% have been reported in literature (57, 
58).  

In contrast, the effect of false positives has not been included in the initial development of the model 
(59). Similar to Scenario #1, each event related to the driver’s actions is supported by a simple FT model 
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(Figure 15), depicting potential causes of the driver failing to brake or that after braking, a slow speed 
collision is not avoided. Model parameters can be found in Table 52. 

Figure 14: Scenario #2 – FCW related fault tree FT#3. 

Table 42 provides the point estimates of the end-state probabilities and resulting CMFs for Scenario #2. 
These values are within 3% of those reported by the PARTS study for all crashes, thus validating the 
model’s parameters for further analysis. Scenario #2 serves as the basis for Scenario #4 which 
incorporates V2X-enhanced FCWs. 

Table 42: Estimated end-state probabilities and crash modification factors for scenario #2. 

End-State Estimated Prob. Diff.% (PARTS, 2022) CMF (Scenario #1) 

No Collision (Total) 9.721E-01 -- -- 

No Collision Scenario 8.788E-01 -- -- 

No Collision 9.886E-02 28.21% 1.0407 

PDO Crash  1.558E-02 -4.90% 0.1899 

Injury Crash  5.881E-03 3.40% 0.1619 

All Crashes 2.146E-02 -2.76% 0.1824 
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(a) FT#4 – Driver fails to brake when assisted by FCW (Event 3b failure). 

(b) FT#5 – Braking does not avoid a collision (Event 4b failure). 

Figure 15: Scenario #2 – driver related fault trees FT#4-5. 

Scenario 3: Driver Assisted by Local AEB System  

The third scenario consists of a driver supported by an FCW system that relies on the host vehicle’s local 
sensors to detect the presence of an obstacle on the road and determine the probability of an imminent 
crash given the current vehicle speeds. In addition to the FCW system, the vehicle is equipped with AEB 
features.  

This case is structured around the following high-level events:  
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• The obstacle is detected by vehicle sensors. The detection of the object triggers an alarm for the 
driver.  

• The driver brakes in response to detecting the obstacle. The success of this event implies that 
the driver detected the alarm, and that the driver braked in response.  

• The AEB functionality is triggered in response to the driver not reacting to the alarm within a set 
time budget.  

• The braking action (performed automatedly or by the driver) is sufficient to avoid a collision 
with the obstacle. The success of this event implies that the driver braked or the AEB was 
implemented sufficiently given the road conditions and that no failure in the vehicle prevented 
braking from occurring. 

Depending on system failures, three different branches are distinguished (see Figure 16):  

Figure 16: Scenario #3 – driver assisted by local AEB system. 

• Branch 1: Collision avoidance is supported by single-vehicle FCW assisted driver warnings. A 
recovery path is available through the AEB functionality. 

• Branch 2: No additional collision avoidance assists the driver. A recovery path is available 
through the AEB functionality. This assumes the independence between FCW and AEB failures. 
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This scenario is depicted in Figure 16, where the end-states can be associated with whether the FCW 
and/or the AEB systems were triggered. The new events depict the effectiveness of the AEB system in 
assisting the driver to avoid a collision.  

The behavior of the AEB system is described by the FT model presented in Figure 17. As an initial 
approach, this model considers the independence of the FCW and AEB systems, including the sensors 
and triggering mechanisms. The AEB system’s failure is characterized by failing to trigger the braking 
system even if conditions are met (36), and similar to the driver brake models, if the braking 
implemented is sufficient to avoid a collision based on the road conditions. Note that in this case, the 
crash end-states are singularly attributed to failures in the AEB system, and that no distinction is made 
between high-TTC and low-TTC scenarios. Model parameters can be found in Table 53. 

Figure 17: Scenario #3 – AEB related fault tree FT#6. 

Table 43 provides the point estimates of the end-state probabilities and resulting CMFs for Scenario #3. 
These values are within 5% of those reported by the PARTS study for all crashes, thus validating the 
model’s parameters for further analysis. Scenario #3 serves as the basis for Scenario #5 which 
incorporates V2X-enhanced FCWs supported by AEB. 
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Table 43: Estimated end-state probabilities and crash modification factors for scenario #3. 

End-State Estimated Prob. Diff.% (PARTS, 2022) CMF (Scenario #1) 

No Collision (Total) 9.834E-01 -- -- 

No Collision Scenario 8.788E-01 -- -- 

No Collision 1.085E-01 14.87% 1.1419 

PDO Crash  9.581E-03 -5.03% 0.5018 

Injury Crash  3.152E-03 -4.41% 0.5507 

All Crashes 1.273E-02 -4.88% 0.5149 

 

Scenario 4: Driver Assisted by V2X-enhanced FCW 

The fourth scenario demonstrates the potential impact of V2X-related technologies on driver warnings. 
In this scenario, a driver is supported by an FCW system that relies on the host vehicle’s local sensors. In 
addition, the FCW is supported by a V2X communication system which receives BSM from remote 
vehicles equipped with V2V communication on-board devices or infrastructure-based RSUs. The BSMs 
are received by the host vehicle and communicated to the driver though the same HMI mechanism as 
the regular FCWs. Thus, the V2X not only does provide an additional redundancy layer to trigger driver 
warnings but also can provide earlier warnings to the driver. The focus of Scenario #4 is the role of V2X 
communications in increasing short-TTC driver warnings.  

This case is structured around the following high-level events:  

• The obstacle is detected by vehicle sensors or through vehicle communications. The detection of 
the object triggers an alarm for the driver.  

• The driver brakes in response to detecting the obstacle. The success of this event implies that 
the driver detected the alarm and braked in response.  

• The braking action is sufficient to avoid a collision with the obstacle. The success of this event 
implies that the driver braked sufficiently given the road conditions and that no failure in the 
vehicle prevented braking from occurring. 

Depending on system failures, three different branches are distinguished (see Figure 18):  

• Branch 1: Collision avoidance is supported by V2X assisted driver warnings. 

• Branch 2: Collision avoidance is supported by single-vehicle FCW assisted driver warnings, i.e., 
the V2X communications do not trigger the FCW driver alerts.  

• Branch 3: No additional collision avoidance assists the driver, i.e., neither the V2X 
communications nor the vehicle sensors trigger the FCW driver alerts.  
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This scenario is depicted in Figure 18, where the end-states can be associated with whether the FCW 
system was triggered based on the host vehicle’s sensors or through received BSM. The new events 
depict the effectiveness of the V2X system in providing redundancy to the FCW assisting the driver to 
avoid the collision.  

Figure 18: Scenario #4 – driver assisted by V2X-enhanced FCW. 

The behavior of the V2X-enhanced FCW system is described by the FT model presented in Figure 19. 
Despite the limited data available to characterize the impact of vehicle communications on driver 
warning generation in real road conditions, several academic works have sought to quantify the impact 
of vehicle speeds and distance to the quality and reliability of vehicle communication. For instance, early 
works report package loss rates up to 3% across distances between host and remote vehicles from 0-200 
m and differences between speeds from 10-50 km/h (50). Other studies focus on the latency and the 
rate of stale information relayed between different OBUs and RSUs. Further studies are required to 
establish delay and/or package loss thresholds and corresponding impact on the FCW reliability. Similar 
to previous scenarios, each event related to the driver’s actions is supported by a simple FT model 
(Figure 20), depicting potential causes of the driver failing to brake or that after braking, a slow speed 
collision is not avoided. Model parameters can be found in Table 54. 

Table 44 provides the point estimates of the end-state probabilities and resulting CMFs for Scenario #4 
with respect to Scenario #1 (the base case) and Scenario #2 (FCW relying on the host vehicle’s sensors). 
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The estimated CMF for the V2X-enhanced FCW is 0.24 when compared to no driver warnings and can 
provide a reduction of 0.07 with respect to traditional FCW functions.  

Figure 19: Scenario #4 – V2X related fault tree FT#7. 

 

Table 44: Estimated end-state probabilities and crash modification factors for scenario #4. 

End-State Estimated Prob. CMF (Scenario #1) CMF (Scenario #2) 

No Collision (Total) 9.801E-01 -- -- 

No Collision Scenario 8.788E-01 -- -- 

No Collision 1.014E-01 1.0671 1.0254 

PDO Crash  1.389E-02 0.2776 0.1082 

Injury Crash  5.978E-03 0.1481 -0.0164 

All Crashes 1.987E-02 0.2430 0.0741 
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(a) FT#8 – Driver fails to brake when assisted by V2X-FCW (Event 3a failure). 

(b) FT#9 – Braking does not avoid a collision (Event 4a failure). 

Figure 20: Scenario #4 – driver related fault trees FT#8-9. 

Figure 21 and Figure 22 present selected importance metrics for PDO and Injury crashes, respectively, in 
the case the V2X-enhanced warning have failed (Branch 2). These figures show the impact of the V2X-
related events in the scenario outcome by crash severity. The event 2.A.2 V2X-FCW Trigger failure 
depicted in Figure 19 exhibits the highest impact on the system-level risk. This event is related to the 
host vehicle receiving information about an obstacle on the road through V2X but failing to trigger the 
driver warning on time, potentially related to stale information, excessive network latency, or the FCW’s 
reliability. Other events relevant to PDO crashes refer to failures communicating the driver warnings 
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(2.A.1) or the driver’s insufficient reaction to the warning (4b), while events related to the driver’s 
behavior (5.A.2.2 and 7B) play an important role in injury crashes. 

  

(a) RRW (b) RAW 

Figure 21: Selected importance metrics, scenario 4 - PDO crashes under V2X failure. 

  

(a) RRW (b) RAW 

Figure 22: Selected importance metrics, scenario 4 - injury crashes under V2X failure. 

 

Scenario 5: Driver Assisted by V2X-enhanced FCW and AEB 

The fifth scenario demonstrates the potential impact of V2X-related technologies on driver warnings, 
coupled to the AEB features. In this scenario, a driver is supported by an FCW system that relies on the 
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host vehicle’s local sensors. The FCW is supported by a V2X communication system which receives BSM 
from remote vehicles equipped with V2V communication on-board devices or infrastructure-based 
RSUs, as described in Scenario #4. In addition to the V2X-enhanced FCW system, the vehicle is equipped 
with AEB features as described in Scenario #3.  

This case is structured around the following high-level events:  

• The obstacle is detected by vehicle sensors or through vehicle communications. The detection of 
the object triggers an alarm for the driver.  

• The driver brakes in response to detecting the obstacle. The success of this event implies that 
the driver detected the alarm, and that the driver braked in response.  

• The AEB functionality is triggered in response to the driver not reacting to the alarm within a set 
time budget. 

• The braking action (performed automatedly or by the driver) is sufficient to avoid a collision 
with the obstacle. The success of this event implies that the driver braked or the AEB was 
implemented sufficiently given the road conditions and that no failure in the vehicle prevented 
braking from occurring. 

Depending on system failures, three different branches are distinguished (see Figure 23):  

• Branch 1: Collision avoidance is supported by V2X assisted driver warnings and a recovery path 
is available through AEB functionality.  

• Branch 2: Collision avoidance is supported by single-vehicle FCW assisted driver warnings, i.e., 
the V2X communications do not trigger the FCW driver alerts. However, a recovery path is 
available through AEB functionality. 

• Branch 3: No additional collision avoidance assists the driver, i.e., neither the V2X 
communications nor the vehicle sensors trigger the FCW driver alerts. A recovery path is 
available through the AEB functionality. This assumes the independence between FCW and AEB 
failures. 

Scenario #5 combines the FT models developed for Scenario #3-4. Thus, the behavior of the V2X-
enhanced FCW system is described by the FT model presented in Figure 19, while the AEB functionality 
is described by Figure 17. The driver behavior models are the same as for Scenario #4 (Figure 20). The 
full model parameters can be found in Table 55. 

Table 45 provides the point estimates of the end-state probabilities and resulting CMFs for Scenario #5 
with respect to Scenario #1 (the base case) and Scenario #3 (FCW relying on the host vehicle’s sensors 
and AEB as a safety backup function). The estimated CMF for the V2X-enhanced FCW is 0.55 when 
compared to no driver warnings and can provide a reduction of 0.08 with respect to traditional FCW and 
AEB functions. These results are consistent with those obtained in Scenario #4, given the assumption 
that V2X and AEB functions are independent.  

Figure 24 and Figure 25 present selected importance metrics for PDO and Injury crashes, respectively, in 
the case the V2X-enhanced warning have failed (Branch 2) but when AEB functionalities are available. As 
can be seen in both figures, the role of AEB’s reliability is key for PDO and Injury crashes (Figure 17). 
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Other events relevant to PDO crashes refer to the driver’s insufficient reaction to the warning (4a), while 
events related to the driver’s behavior (5.A.2.2 and 7B) and environmental conditions (5.A.2.1) play an 
important role in injury crashes. 

Figure 23: Scenario #5 – driver assisted by V2X-enhanced FCW and AEB. 

Table 45: Estimated end-state probabilities and crash modification factors for scenario #5. 

End-State Estimated Prob. CMF (Scenario #1) CMF (Scenario #2) 

No Collision (Total) 9.883E-01 -- -- 

No Collision Scenario 8.788E-01 -- -- 

No Collision 1.095E-01 1.1529 1.1078 
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End-State Estimated Prob. CMF (Scenario #1) CMF (Scenario #2) 

PDO Crash  8.215E-03 0.5728 0.1426 

Injury Crash  3.512E-03 0.4995 -0.1141 

All Crashes 1.173E-02 0.5532 0.0790 

  

(a) RRW (b) RAW 

Figure 24: Selected importance metrics, scenario 5 - PDO crashes under V2X failure. 

  

(a) RRW (b) RAW 

Figure 25: Selected importance metrics, scenario 5 - injury crashes under V2X failure. 
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Discussion and Concluding 

Remarks 

While driving automation and communication technologies possess significant potential to enhance 
road safety, there is a critical need for systematic and transparent data collection and model-based risk 
assessment methods. Further, driver behavior, extensively studied within the field of human factors, will 
continue to play a role in traffic safety. Thus, it is important to leverage methods capable of representing 
causal relationships, handling uncertainty and leveraging incomplete data, such as Bayesian modeling 
and probabilistic simulation. Such methods aim to uncover high-severity, low-frequency events that 
simulation-based analysis might overlook.  

The methods presented in this report offer an initial estimate of the safety benefits of V2X-enhanced 
driver warnings in collision avoidance scenarios. The results obtained from the developed scenario-
based models rely on data extracted from national crash datasets, reported CMF for FCW and AEB 
technologies, and estimations of V2X communications reliability based on academic literature and 
limited field tests.  

To fairly assess the incremental risk-reduction impact of V2X technologies, many other factors must be 
assessed in addition to functional safety analysis, for instance, investigating the impact of extending 
time budgets for driver maneuvers.  

Identified Data Requirements 

As more vehicles with a combination of ADAS functions are deployed on public roads, collecting 
supporting evidence to support the safety benefits of specific technologies may become increasingly 
challenging (26). However, accurate information on function activations under varied weather 
conditions and its impact on driver behavior may only be possible to collect from naturalistic driving 
studies (36). 

Relying on crash statistics as the main source of evidence to demonstrate the safety impact of driver 
assistance technology can hide key can hide the interactions between them. While it has been reported 
that AEB effectively can reduce rear-end collision rates in emergency situations, relying solely on crash 
frequency reductions obscures whether driver warnings (FCW) have contributed to the driver’s reaction. 
While these technologies are expected to function in combination on new motor vehicles, without 
obtaining information about function activations (and under what conditions) in a pre-crash or near miss 
scenarios, the contributions of each technology to reducing crash rates are harder to discern. This is 
partially observed when transitioning between scenarios with vehicles equipped with FCW to those with 
FCW and AEB functionalities (Scenario #2 vs. Scenario #3, and Scenario #4 vs. Scenario #5). Collecting 
information on function activations may be important to determine whether early driver warnings (such 
as those given by V2X) can impact driver behavior in pre-crash scenarios and to what extent.  
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The results obtained in this initial work indicate that V2X can provide warning redundancy, increasing 
CMFs between 7-8% when compared to their counterparts with FCW and AEB but without V2X 
communications (Scenario #5 vs. #3 and #4 vs. #2). The models developed in MoPRA can also enable 
system requirement analysis. For instance, Figure 26 and Figure 27 provide estimations on how the 
CMFs would be affected by the V2X module reliability (see fault tree model in Figure 19). Figure 26 
compares V2X-enhanced FCW with and without AEB support against no driver assistance functions 
available (Scenario #5 vs. Scenario #1 and Scenario #4 vs. Scenario #1, respectively). The linear increase 
behavior may be explained by the independence assumptions in model construction.  

Figure 26: Impact of V2X module reliability on CMFs, considering V2X-enhanced FCW and AEB compared 
to no driver assistance. 

Figure 27, on the other hand, compares the obtained CMFs for V2X-enhanced FCW with and without 
AEB support against traditional FCW and AEB (Scenario #5 vs. Scenario #3 and Scenario #4 vs. Scenario 
#2, respectively). It can be observed that for systems combining V2X-enhanced FCW and AEB, the safety 
impacts are positive starting at around a V2X driver warning reliability of 55%. This can indicate that at 
lower reliabilities, if the system fails to generate the driver warning, the driver would not have enough 
time to implement the correct action and thus, the braking success will rely on the AEB system (which 
may or may not be triggered). These initials findings suggest that for time-sensitive scenarios, such as 
collision warnings applications, moderate CMF increases can be observed when combining V2X and 
FCW, but that overall safety impacts are driven mainly by the AEB.  

Limitations of the current models include the exclusion of time budgets that extend beyond short to 
very short time frames, which may inadequately capture the full range of driver decision-making 
processes. Further study is necessary to refine these model parameters and incorporate longer time 
scales, enabling a more comprehensive understanding of how drivers respond to V2X communications 
over extended periods. While this may carry important implications for driver warning and vehicle 
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interface design, it may also imply that the effectiveness of V2X communications may be better 
observed across other functions that do not require immediate reaction from the driver. Immediate 
collision warning scenarios may not represent optimal use cases for demonstrating the capabilities of 
V2X communications due to the fundamental characteristics of the technology.  

Figure 27: Impact of V2X module reliability on CMFs, considering V2X-enhanced FCW and AEB compared 
to traditional FCW and AEB. 

While the extended communication range introduced by V2X enhances situational awareness and 
potentially providing additional time for decision-making, it simultaneously reduces the likelihood of a 
vehicle encountering the high-risk conditions required to test immediate collision warning functionality. 
Consequently, the overall exposure to scenario crashes is diminished, limiting the ability to evaluate V2X 
performance in such high-risk and low-likelihood scenarios. This suggests that the primary strength of 
V2X lies in its potential to support preventive safety measures and enhancing broader traffic 
management, rather than in collision-imminent scenarios.  

Expanding the scope from crash-based metrics to other surrogate safety metrics offers alternative 
strategies for advancing the evaluation of V2X communication systems and driver-assist technologies. 
Metrics such as increased time headways, decreased tailgating, harsh-braking events, and lane changes, 
alongside heightened driver awareness of emergency vehicles, can be effectively captured through 
small-scale naturalistic driving studies (26). However, in time-sensitive applications, understanding the 
causal connection between packet loss rates and the failure to trigger driver warnings remains an 
underexplored area. While existing studies demonstrate high reliability for message transmission under 
varied conditions, they often do not address the generation of actual driver warnings, and the 
prevalence of false positives, which can undermine system credibility and effectiveness (60, 61). To 
advance the understanding of driver behavior and system reliability, future research should incorporate 
additional BSM and TIM functionalities into scenario development. Expanding the focus to include "near 
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misses" and recovery paths is critical for identifying interactions and potential failure modes that might 
not result in collisions but still provide valuable insights into system performance and safety margins.  

To enhance these analyses, integrating crash probability estimation methods based on speed reduction 
could be a valuable approach, leveraging validated simulation tools to model these scenarios. 
Importantly, the impact of low or delayed warnings on driver behavior—particularly those that fall 
outside the scope of FCW but still influence decision-making—merits further investigation. There is also 
a need to collect large-scale evidence of driver compliance with system recommendations and their 
interactions with FCW and AEB functions. Additionally, improved access to real-world crash data is 
crucial for both micro- and macro-level analyses. At the micro level, detailed data on the engagement 
status of ADAS features is essential. At the macro level, incident reporting systems should be enhanced 
to include specific entries for ADAS/ADS capabilities and V2X-related information, with the aim of 
collecting reliability and other performance indicators of these technologies in real-world applications. 
To address these gaps, future research should incorporate controlled experiments to systematically 
collect and analyze detailed vehicle dynamic data, providing a more robust foundation for 
understanding and improving system performance under varying operational conditions, as well as 
delayed and intermittent warnings. 

Furthermore, it is essential to incorporate realistic deployment assumptions into V2X reliability 
estimations, moving beyond the current assumption that V2V and V2I communication capabilities are 
available within the analyzed corridor. Incorporating the impact of the proportion of vehicles equipped 
with V2V functionalities and the share of infrastructure equipped with V2I capacities, models can more 
accurately model the operational reliability of V2X systems and their scalability in diverse deployment 
scenarios. 

Potential future research 

The next phase of this project will focus on refining the risk-informed system requirements for V2X 
technologies and identifying key data collection needs to enhance model accuracy.  

Building on the initial risk assessment framework, this phase aims to define safety-critical parameters 
and develop model-based system, requirements that address both vehicle-side and infrastructure-side 
technologies. By analyzing functional constraints and identifying single points of failure, the project aims 
to propose operational limits and design considerations to enhance V2X reliability and complement 
existing industry standards.  

To improve the V2X risk assessment framework, future work will incorporate a more detailed crash data 
analysis and other sources to refine BBNs model that better capture the impact of weather conditions, 
road type, road geometry, and other scenario characteristics on scenario development. Expanding the 
scenarios analyzed will provide a more comprehensive understanding of how infrastructure and vehicle-
side technologies interact, potentially broadening the scope to additional V2X-enabled applications.  

Another key focus will be identifying critical data collection initiatives to support future model 
improvements. This includes gathering real-world data on V2X technology reliability, understanding 
operational conditions such as road and weather factors, and incorporating insights from collision and 
near-miss events. These efforts will help bridge current data gaps and improve the accuracy of system 
reliability estimations.  
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MoPRA implementation  

The MoPRA web application is a scenario-based probabilistic risk assessment platform to analyze the 
safety of different mobility systems with importance measures and uncertainty quantification 
capabilities. This tool is designed so that users can assess the impact of different contextual elements 
(weather, road conditions, driver conditions), level of driving automation, and vehicle-to-everything 
communications on the probability of driving related incidents. 

Currently, MoPRA is equipped to analyze the impact of V2X-enhanced driver warnings in collision 
avoidance scenarios in vehicles equipped with FCW and AEB. The user can choose from dropdown 
menus to select factors affecting the scenario development, such as weather, road, and driver 
conditions. The user can also choose to visualize the results through importance metrics and perform 
uncertainty analysis on different model variables.  

The initial version of the user interface is shown in Figure 28 and each function is briefly described in the 
following sections.  

Figure 28: Sample of MoPRA user interface. 

User Input 

The following options are available for the user to change in MoPRA. These options do not affect the 
underlying HCL models but do modify event probabilities in the lower levels of the model (evidence in 
the BNs).  
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Scenario selection  

The scenario considers a driver encountering a slow or stopped vehicle on a straight road (non-
intersection). The driver must detect the obstacle and take the appropriate action (in this case, 
breaking) to avoid a collision, and is assisted by a Forward Collision Warning (FCW) system.  

• Option 1 – V2X-enabled collision warning: The FCW is supported by V2X communication system 
providing earlier warnings to the driver. 

• Option 2 – V2X-enabled collision warning and automated emergency braking: In addition to 
the V2X-enabled FCW functionality, the vehicle is equipped with automated emergency braking 
(AEB) features. 

Driving conditions 

• Weather: Weather conditions in which the scenario develops. Options are “Clear”, “Adverse” 
(including cloudy, rain, fog, snow, and others), and “Not Specified”. 

• Road Surface: Road surface conditions. Options are “Dry”, “Wet”, and “Not Specified”. Snow 
and other adverse conditions are not currently considered. 

• Light Conditions: Light conditions affecting driver visibility. Options are “Daylight”, “Dark” 
(lighted, not lighted, and unknown lighting), combined ‘Dawn/Dusk” conditions, and “Not 
Specified”. 

Driver state  

• Driver Distracted? The driver may be distracted by non-driving related tasks, reducing their 
ability to detect vehicle warnings and driving conditions. Options are “Distracted”, “Attentive”, 
or “Not Specified”.  

• Driver Speeding? Whether the vehicle is traveling at a speed higher than the posted limit. 
Options are “Speeding”, “No Speeding”, or “Not Specified”.  

• Driver Impaired? The Driver may be impaired by alcohol or drug use, reducing their ability to 
detect and react to driving conditions. Options are “Yes”, “No”, or “Not Specified”.  

Road type 

• Road Speed? “The road traveled is classified by the posted speed limit as a high-speed road 
(>45mph) or low-speed road (<45mph). Options are “High Speed”, “Low Speed”, or “Not 
Specified”.  

Evaluation Results 

The user has the option to obtain additional information about the results. These options include:  

• Uncertainty Analysis: Enabling this setting leads to sampling over uncertainty in the entire 
model using the given sampling method and number of samples. The current implementation 
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has a default calculation method based on Monte Carlo sampling with 𝑛 = 100 samples. Please 
review MoPRA References for more information. 

• Importance Measures: Used to rank components with respect to their influence on the system 
reliability. The importance metrics for each cut set (i.e., combination of events leading to a 
system-level failure) can be shown in table or figure form. Please review MoPRA References for 
more information. 

For more information about the methods and metrics, refer to HCL Software and Quantification Section. 

Evaluation Summary  

The evaluation summary portion of the interface provides the point estimate probabilities for each end-
state, and the contribution of each technology to said end-state. Figure 29 presents an example for 
crash probabilities by crash severity (collision avoided, PDO crash, and injury crash) for Scenario #4: V2X-
enabled collision warning under clear weather conditions and when the driver was speeding. When 
selecting a specific end-state (“Crash_Injury”), details on each of the contributing scenario branches can 
be found.  

The evaluation summary is unchanged when the user selects using importance measures or conducting 
uncertainty analyses.  

Figure 29: Sample of MoPRA user interface - Evaluation Summary. 

Result Section  

The evaluation results portion of the interface provides greater detail about the model’s quantification. 
The tree structure on the left side of Figure 30 allows the user to select results at different levels of the 
model: ESD, FT, or BBN.  
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Figure 30: Sample of MoPRA user interface – Evaluation Results. 

Result Tree Descriptions 

Selecting each model layer, the user is presented with the following descriptions of the model:  

• Event Sequence Diagram Node – V2X-enabled Driver Warning: A driver encounters a slow or 
stopped moving vehicle. The vehicle's FCW is supported by V2X communication system 
providing earlier warnings to the driver. 

Scenario development depends on whether the obstacle is detected by vehicle (own sensors or 
through V2X) and the driver alarm is triggered, (2) the driver brakes in response to detecting the 
obstacle, and (3) if the braking action is sufficient to avoid a collision with the obstacle. 

• Fault Tree Node – Driver Warning Failure (V2X-FCW): Scenario development depends on 
whether (1) the V2X assisted driver warnings were successfully triggered and (2) the driver 
implemented the correct action given the driving conditions. 

A failure of the driver warning system can occur based on (1) the vehicle’s sensor fail to detect 
the obstacle, (2) the alarm is not triggered when FCW conditions are met, (3) the human-
machine interface fails to communicate the alarm (audio, visual), (4) the information received 
through V2X is incorrect, or (5) connectivity failures prevent V2X communication. 

This fault tree represents the contribution of the V2X-enhanced FCW failures to system-level 
failures. 

• Fault Tree Node – Driver Warning Failure (FCW): Scenario development depends on whether 
(1) the V2X assisted driver warnings were successfully triggered and (2) the driver implemented 
the correct action given the driving conditions. 

A failure of the driver warning system can occur based on (1) the vehicle’s sensor fail to detect 
the obstacle, (2) the alarm is not triggered when FCW conditions are met, (3) the human-
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machine interface fails to communicate the alarm (audio, visual), (4) the information received 
through V2X is incorrect, or (5) connectivity failures prevent V2X communication. 

This fault tree represents the contribution of the host vehicle's FCW failures to system-level 
failures. 

• Fault Tree Node – Driver-related Error: Scenario development depends on whether (1) the V2X 
assisted driver warnings were successfully triggered and (2) the driver implemented the correct 
action given the driving conditions. 

A driver-related error can occur if they fail to (1) react to a an obstacle on the road (i.e., the 
driver does not brake to avoid the collision) or (2) the action does not prevent the collision (i.e., 
the collision is unavoidable given the current driving conditions). These errors can occur 
whether the driver is (1) assisted by V2X-enabled warnings, (2) assisted by the vehicle’s own 
FCW, or (3) when the driver warnings have not been triggered. 

This fault tree represents the contribution of the (1) driver failing to react to an obstacle on the 
road (i.e., the driver does not brake to avoid the collision) to the system-level failures. 

• Fault Tree Node – Braking-related Error: Scenario development depends on whether (1) the 
V2X assisted driver warnings were successfully triggered and (2) the driver implemented the 
correct action given the driving conditions. 

A driver-related error can occur if they fail to (1) react to an obstacle on the road (i.e., the driver 
does not brake to avoid the collision) or (2) the action does not prevent the collision (i.e., the 
collision is unavoidable given the current driving conditions). These errors can occur whether 
the driver is (1) assisted by V2X-enabled warnings, (2) assisted by the vehicle’s own FCW, or (3) 
when the driver warnings have not been triggered. 

This fault tree represents the contribution of the (1) the implemented brake action failure to 
prevent the collision (i.e., the collision is unavoidable given the current driving conditions) to the 
system-level failures. 

• Bayesian Belief Diagram Node – V2X General Model: This network represents the effect of the 
driver’s state (distraction, impaired perception, speeding), driving conditions (weather, light, 
and road surface conditions) and road type (high/low speed) have on (1) scenario exposure 
rates, (2) the probability of the driver detecting and reacting to a warning or an obstacle on the 
road, (3) the vehicle's connectivity and sensor reliability, and (4) the complexity of the driving 
task. 

Cut Sets and Uncertainty Analysis  

When selecting the “Cut Set” node under each layer of the model, the user is presented with greater 
details of each path to failure, as shown on the right side of Figure 30. By selecting a specific end-state, 
the contributing combinations of lower-level events are shown. Figure 31 shows an example for all the 
events contributing to a PDO crash when the driver was successfully assisted by FCW, and their 
corresponding point estimate probability of occurrence.  
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Figure 31: Sample of MoPRA user interface – Evaluation Results, Cut Sets. 

While the “Cut Sets” for the ESD-level models show the results per end-state, the FT level provides 
information about its failed state, while the BBN shows the probabilities obtained for each node and 
whether evidence has been set. Figure 32 presents an example of the BBN model results.  

Additionally, when selecting the option of performing uncertainty analysis, MoPRA provides the option 
to export the mean, median, and the 5%-95% confidence bounds of each Cut Set, as well as presenting a 
histogram of the sampled probabilities (Figure 33).  
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Figure 32: Sample of MoPRA user interface – Evaluation Results, Cut Sets, BBN Layer. 

Figure 33: Sample of MoPRA user interface – Evaluation Results, Uncertainty Analysis. 

 

Importance Measures 

When the option for “Importance Measures” is toggled, the user may select to show the relative impact 
of low-level events on each failure path (Cut-Set). These results can be viewed either in table or plot 
form, as shown in Figure 34.  
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(a) Table View. 

  

(b) Plot View 

Figure 34: Sample of MoPRA user interface – Evaluation Results, Importance Measures. 
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Appendix 

Crash Tables  

The following tables (Table 46-Table 48) provide an overview of the rear-end crashes by crash severity 
and the percentage these represent with respect to (1) all other crashes in their severity class, (2) all 
rear-end crashes, (3) all crashes.  

Table 46: Fatalities from rear-end crashes sampled from CRSS. 

Year Number 
Percent  

(w.r.t. All Fatalities) 

Percent  

(w.r.t All Rear-End Crashes) 

Percent  

(w.r.t All Crashes) 

2019 2,363 7.06% 0.11% 0.03% 

2020 2,441 6.79% 0.18% 0.05% 

2021 2,971 7.47% 0.18% 0.05% 

Average 2,592 7.11% 0.16% 0.04% 

Table 47: Injury crashes from rear-end crashes sampled from CRSS. 

Year Number 
Percent (w.r.t. All 

Injury Crashes) 

Percent (w.r.t All Rear-End 

Crashes) 

Percent (w.r.t All 

Crashes) 

2019 455,806 23.79% 22.18% 6.75% 

2020 329,472 20.68% 24.06% 6.27% 

2021 367,846 21.29% 22.13% 6.03% 

Average 384,375 21.92% 22.79% 6.35% 

Table 48: PDO crashes from rear-end crashes sampled from CRSS. 

Year Number 
Percent (w.r.t. All PDO 

Crashes) 

Percent (w.r.t All Rear-End 

Crashes) 

Percent (w.r.t All 

Crashes) 

2019 1,596,903 33.23% 77.71% 23.64% 

2020 1,037,665 28.65% 75.77% 19.76% 
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Year Number 
Percent (w.r.t. All PDO 

Crashes) 

Percent (w.r.t All Rear-End 

Crashes) 

Percent (w.r.t All 

Crashes) 

2021 1,291,605 29.79% 77.69% 21.16% 

Average 1,308,724 30.56% 77.05% 21.52% 

 
Based on the scenario criteria, the rear-end crash statistics were further refined. The following tables 
(Table 49-Table 50) provide an overview of the sub-sample of rear-end crashes by crash severity and the 
percentage these represent with respect to (1) all other crashes in their severity class, and (2) all rear-
end crashes by severity class.  

Table 49: Sub-sample of fatal and injury rear-end crashes. 

Crash Severity 
Fatal 

 
Injury 

Year Number 

Percent 

(w.r.t All 

Fatalities) 

Percent 

(w.r.t. Rear-

End 

Fatalities) 

Number 

Percent 

(w.r.t. All 

Injuries) 

Percent 

(w.r.t 

Rear-End 

Injuries) 

2019 247 0.74% 10.45% 116,336 6.07% 25.52% 

2020 259 0.72% 10.61% 86,118 5.40% 26.14% 

2021 321 0.81% 10.80% 103,402 5.99% 28.11% 

Average 276 0.76% 10.62% 101,952 5.82% 26.59% 

Table 50: Sub-sample of PDO and total rear-end crashes. 

Crash Severity PDO Total 

Year Number 

Percent 

(w.r.t All 

PDO 

Crashes) 

Percent 

(w.r.t Rear-

End PDO 

Crashes) 

Number 

Percent 

(w.r.t. All 

Rear-End 

Crashes) 

Percent 

(w.r.t. All 

Crashes) 

2019 417,141 8.68% 26.12% 533,724 25.97% 7.90% 

2020 253,213 6.99% 24.40% 339,590 24.80% 6.47% 

2021 324,860 7.49% 25.15% 428,583 25.78% 7.02% 
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Crash Severity PDO Total 

Average 331,738 7.72% 25.23% 433,966 25.52% 7.13% 

 

Model Details 

This section provides the summary tables containing the scenario model parameters. As the models 
progressively build upon the previous one, the newly introduced and adjusted parameters are 
highlighted in bold in Table 52 to Table 55.  

Table 51: Scenario #1 model parameters. 

Event Model Sub-Event Model/Reference Value/Node State 

Initiating 
Event 

BBN 
General 
Model 

-- FARS “Scenario” True 

5a. 
Driver 
brakes 

FT #1 Driver 
fails to 
brake 
(unassisted) 

5.A.2.1 No 
Visibility 

“Description of light-
vehicle pre-crash” 
(2013) (55). 

0.05 -- 

5.A.2.2 Driver 
fails to monitor 
driving 
environment 

BBN General Model 
“Driver 
Detection 
Task” 

False 

7.B Driver fails 
to react 

Normal (5%, 95%) (0.25, 0.29) -- 

5b. Slow 
speed 
collision 
is 
avoided 

FT #2 
Braking 
does not 
avoid a 
collision 

7.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

7.C.2 Driver fails 
to brake 
sufficiently 

BBN General Model 
“Driver Action 
Task” 

False 
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Table 52: Scenario #2 model parameters. 

Event Model Sub-Event Model/Reference Value/Node State 

Initiating 
Event 

BBN 
General 
Model 

-- FARS “Scenario” True 

2b. 
Obstacle 
detected 
(FCW) 

FT #3 2.T- 
Driver 
Warning 
Failure 
(FCW) 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 

3.B.1 Sensor 
Failure 

Uniform  (0.01, 0.05) -- 

3.B.2 FCW 
Trigger Failure 

Normal (5%, 95%) 
(0.0073, 
0.0372) 

-- 

3b. 
Driver 
brakes 
(FCW) 

FT #4 4B. 
Driver fails 
to brake 
when 
assisted by 
FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle 
warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

6.B Driver fails 
to react 

Normal (5%, 95%) (0.16, 0.20) -- 

4b. Slow 
speed 
collision 
is 
avoided 
(FCW) 

FT #5 6C. 
Braking 
does not 
avoid a 
collision 
(FCW) 

6.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

6.C.2 Driver fails 
to brake 
sufficiently 

Normal (5%, 95%) (0.125, 0.141) -- 

5a. 
Driver 
brakes 

FT #1 4C. 
Driver fails 
to brake 
(unassisted) 

5.A.2.1 No 
Visibility 

“Description of light-
vehicle pre-crash” 
(2013) (55). 

0.05 -- 

5.A.2.2 Driver 
fails to monitor 
driving 
environment 

BBN General Model 
“Driver 
Detection 
Task” 

False 

7.B Driver fails 
to react 

Normal (5%, 95%) (0.22, 0.24) -- 
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Event Model Sub-Event Model/Reference Value/Node State 

5b. Slow 
speed 
collision 
is 
avoided 

FT #2 7C. 
Braking 
does not 
avoid a 
collision 

7.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

7.C.2 Driver fails 
to brake 
sufficiently 

BBN General Model 
“Driver Action 
Task” 

False 

 

Table 53: Scenario #3 model parameters. 

Event Model Sub-Event Model/Reference Value/Node State 

Initiating 
Event 

BBN 
General 
Model 

-- FARS “Scenario” True 

2b. 
Obstacle 
detected 
(FCW) 

FT #3 2.T- 
Driver 
Warning 
Failure 
(FCW) 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 

3.B.1 Sensor 
Failure 

Uniform  (0.01, 0.05) -- 

3.B.2 FCW 
Trigger Failure 

Normal (5%, 95%) 
(0.0073, 
0.0372) 

-- 

3b. Driver 
brakes 
(FCW) 

FT #4 4B. 
Driver fails 
to brake 
when 
assisted by 
FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle 
warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

6.B Driver fails 
to react 

Normal (5%, 95%) (0.16, 0.20) -- 

4b. Slow 
speed 
collision is 
avoided 
(FCW) 

FT #5 6C. 
Braking 
does not 
avoid a 
collision 
(FCW) 

6.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

6.C.2 Driver 
fails to brake 
sufficiently 

Normal (5%, 95%) (0.145, 0.161) -- 
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Event Model Sub-Event Model/Reference Value/Node State 

5a. Driver 
brakes 

FT #1 4C. 
Driver fails 
to brake 
(unassisted) 

5.A.2.1 No 
Visibility 

“Description of light-
vehicle pre-crash” 
(2013) (55). 

0.05 -- 

5.A.2.2 Driver 
fails to monitor 
driving 
environment 

BBN General Model 
“Driver 
Detection 
Task” 

False 

7.B Driver fails 
to react 

Normal (5%, 95%) (0.22, 0.24) -- 

5b. Slow 
speed 
collision is 
avoided 

FT #2 7C. 
Braking 
does not 
avoid a 
collision 

7.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

7.C.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Driver Action 
Task” 

False 

6a. AEB 
brakes 

FT #6 AEB 
Failure 

9.C AEB Trigger 
Failure 

Normal (5%, 95%) (0.50, 0.60) -- 

6b. Slow 
speed 
collision is 
avoided 
(AEB+FCW) 

FT #6 AEB 
Failure 

8.C.1.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

8.C.1.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Vehicle 
Control” 

False 

6c. Slow 
speed 
collision is 
avoided 
(AEB+FCW) 

FT #6 AEB 
Failure 

8.C.1.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

8.C.1.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Vehicle 
Control” 

False 
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Table 54: Scenario #4 model parameters. 

Event Model Sub-Event Model/Reference Value/Node State 

Initiating 
Event 

BBN 
General 
Model 

-- FARS “Scenario” True 

2a. 
Obstacle 
detected 
(V2X) 

FT #7 1.T- 
Driver 
Warning 
Failure 
(V2X) 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 

2.B.1.1 Package 
Loss 

Normal (5%, 95%) (0.025, 0.035) -- 

2.B.1.2 External 
Network 
Disruption 

BBN General Model “Connectivity” Not Available 

2.B.2.1 V2V 
Processing 
Failure 

Normal (5%, 95%) (0.05, 0.10) -- 

2.B.2.2 V2I 
Processing 
Failure (RSU) 

Normal (5%, 95%) (0.01, 0.05) -- 

3a. 
Driver 
brakes 
(V2X) 

FT #8 4A. 
Driver fails 
to brake 
when 
assisted by 
V2X-FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

5.B Driver fails 
to react 

Normal (5%, 95%) (0.10, 0.15) -- 

4a. Slow 
speed 
collision 
is 
avoided 
(V2X) 

FT #9 5C. 
Braking 
does not 
avoid a 
collision 
(V2X) 

5.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

5.C.2 Driver fails 
to brake 
sufficiently 

Normal (5%, 95%) (0.105, 0.131) -- 

2b. 
Obstacle 

FT #3 2.T- 
Driver 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 
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Event Model Sub-Event Model/Reference Value/Node State 

detected 
(FCW) 

Warning 
Failure 
(FCW) 

3.B.1 Sensor 
Failure 

Uniform  (0.01, 0.05) -- 

3.B.2 FCW 
Trigger Failure 

Normal (5%, 95%) 
(0.0073, 
0.0372) 

-- 

3b. 
Driver 
brakes 
(FCW) 

FT #4 4B. 
Driver fails 
to brake 
when 
assisted by 
FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

6.B Driver fails 
to react 

Normal (5%, 95%) (0.16, 0.20) -- 

4b. Slow 
speed 
collision 
is 
avoided 
(FCW) 

FT #5 6C. 
Braking 
does not 
avoid a 
collision 
(FCW) 

6.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

6.C.2 Driver fails 
to brake 
sufficiently 

Normal (5%, 95%) (0.125, 0.141) -- 

5a. 
Driver 
brakes 

FT #1 4C. 
Driver fails 
to brake 
(unassisted) 

5.A.2.1 No 
Visibility 

“Description of light-
vehicle pre-crash” 
(2013) (55). 

0.05 -- 

5.A.2.2 Driver 
fails to monitor 
driving 
environment 

BBN General Model 
“Driver 
Detection 
Task” 

False 

7.B Driver fails 
to react 

Normal (5%, 95%) (0.22, 0.24) -- 

5b. Slow 
speed 
collision 
is 
avoided 

FT #2 7C. 
Braking 
does not 
avoid a 
collision 

7.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

7.C.2 Driver fails 
to brake 
sufficiently 

BBN General Model 
“Driver Action 
Task” 

False 
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Table 55: Scenario #5 model parameters. 

Event Model Sub-Event Model/Reference Value/Node State 

Initiating 
Event 

BBN 
General 
Model 

-- FARS “Scenario” True 

2a. 
Obstacle 
detected 
(V2X) 

FT #7 1.T- 
Driver 
Warning 
Failure 
(V2X) 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 

2.B.1.1 Package 
Loss 

Normal (5%, 95%) (0.025, 0.035) -- 

2.B.1.2 External 
Network 
Disruption 

BBN General Model “Connectivity” Not Available 

2.B.2.1 V2V 
Processing 
Failure 

Normal (5%, 95%) (0.05, 0.10) -- 

2.B.2.2 V2I 
Processing 
Failure (RSU) 

Normal (5%, 95%) (0.01, 0.05) -- 

3a. Driver 
brakes 
(V2X) 

FT #8 4A. 
Driver fails 
to brake 
when 
assisted by 
V2X-FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle 
warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

5.B Driver fails 
to react 

Normal (5%, 95%) (0.10, 0.15) -- 

4a. Slow 
speed 
collision is 
avoided 
(V2X) 

FT #9 5C. 
Braking 
does not 
avoid a 
collision 
(V2X) 

5.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

5.C.2 Driver 
fails to brake 
sufficiently 

Normal (5%, 95%) (0.105, 0.131) -- 

2b. 
Obstacle 

FT #3 2.T- 
Driver 

2.A.1 HMI 
Failure 

Uniform  (1e-4, 1e-5) -- 
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Event Model Sub-Event Model/Reference Value/Node State 

detected 
(FCW) 

Warning 
Failure 
(FCW) 

3.B.1 Sensor 
Failure 

Uniform  (0.01, 0.05) -- 

3.B.2 FCW 
Trigger Failure 

Normal (5%, 95%) 
(0.0073, 
0.0372) 

-- 

3b. Driver 
brakes 
(FCW) 

FT #4 4B. 
Driver fails 
to brake 
when 
assisted by 
FCW 

5.A.1.1 Driver  
fails to monitor 
vehicle 
warnings 

BBN General Model “Driver State” Not Available 

5.A.1.2 HMI 
Failure 

FT #3 2.T- Driver 
Warning Failure 
(FCW) 

2.A.1 HMI 
Failure 

-- 

6.B Driver fails 
to react 

Normal (5%, 95%) (0.16, 0.20) -- 

4b. Slow 
speed 
collision is 
avoided 
(FCW) 

FT #5 6C. 
Braking 
does not 
avoid a 
collision 
(FCW) 

6.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

6.C.2 Driver 
fails to brake 
sufficiently 

Normal (5%, 95%) (0.125, 0.141) -- 

5a. Driver 
brakes 

FT #1 4C. 
Driver fails 
to brake 
(unassisted) 

5.A.2.1 No 
Visibility 

“Description of light-
vehicle pre-crash” 
(2013) (55). 

0.05 -- 

5.A.2.2 Driver 
fails to monitor 
driving 
environment 

BBN General Model 
“Driver 
Detection 
Task” 

False 

7.B Driver fails 
to react 

Normal (5%, 95%) (0.22, 0.24) -- 

5b. Slow 
speed 
collision is 
avoided 

FT #2 7C. 
Braking 
does not 
avoid a 
collision 

7.C.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

7.C.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Driver Action 
Task” 

False 
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Event Model Sub-Event Model/Reference Value/Node State 

6a. AEB 
brakes 

FT #6 AEB 
Failure 

9.C AEB Trigger 
Failure 

Normal (5%, 95%) (0.50, 0.60) -- 

6b. Slow 
speed 
collision is 
avoided 
(AEB+FCW) 

FT #6 AEB 
Failure 

8.C.1.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

8.C.1.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Vehicle 
Control” 

False 

6c. Slow 
speed 
collision is 
avoided 
(AEB+FCW) 

FT #6 AEB 
Failure 

8.C.1.1 Vehicle 
Brake Failure 

 FARS 1.95E-03 -- 

8.C.1.2 Driver 
fails to brake 
sufficiently 

BBN General Model 
“Vehicle 
Control” 

False 
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