Below, users can build custom reports that include multiple individual research synthesis by selecting one or more mobility technologies or business models and one or more impact areas.
Each individual research synthesis can also be accessed via a matrix view.
How Micromobility affects Health
Emerging micromobility options such as e-bikes and e-scooters can improve accessibility and connectivity for vulnerable population groups, such as those with physical limitations or without access to a car [1], [2]. Compared to biking or walking, electric micromobility (EMM) vehicles are often more accessible to users with lower interest in or capacity for physical activity, while still providing exercise and outdoor enjoyment [1], [2], [3]. For instance, e-bikes are favored by older adults as a form of physical activity and can encourage micromobility use for distances over 3 miles typically covered by cars [4], [5], [6]. An observational study found that starting to e-bike may increase overall biking frequency among older adults, potentially extending the number of years they are able to bike [4], [5], [6]. Despite being less physically demanding than conventional biking, e-biking offers many of the same cardiovascular benefits [5], [7].
In addition to health benefits from access, physical activity, and outdoor enjoyment, increased EMM vehicle usage has the potential to reduce air pollution from cars by substituting car trips and improving access to public transit. EMM vehicles can address the first-mile-last-mile problem, supporting the use of public transit [8], [9]. They also provide an alternative mode of transportation for short trips, which can help alleviate overcrowding on public transport and support social distancing when necessary [8]. Moreover, EMM vehicles may contribute to noise pollution reduction, which is linked to adverse health effects such as cognitive impairment in children and sleep disturbance [9]. However, studies indicate that not all EMM vehicles have the same environmental health benefits; e-scooters, for instance, may have a negative environmental impact compared to the modes they replace (for example, they may replace pedestrian trips) [9], [10], [11]. Additionally, the collection vehicles used for relocating and charging EMM vehicles in shared vehicle programs can contribute to emissions, particularly in less densely populated areas [9].
Safety remains a primary concern for public health regarding EMM usage, and is discussed in more detail in the section devoted to safety impacts. Cyclists, including e-bike users, are vulnerable to injuries and fatalities from collisions with cars. Electric scooter usage can also result in serious injuries, especially head and limb injuries, exacerbated by low helmet usage [9], [12]. Injuries to pedestrians from e-scooter riders on sidewalks are another significant concern [9]. Providing separate, designated infrastructure for EMM can enhance safety [1].
Future research could include the development of best practices for maximizing public health benefits of micromobility programs, as well as further analysis of the health impacts of different micromobility modes.
How Micromobility affects Safety
Safety is a paramount concern - and barrier to more use - for people who want to travel by bike or scooter, motorized or not. Street connectivity and dedicated bike routes offer some of the strongest safety protections for micromobility users [1]. In places without protected infrastructure for active transportation, where cars compete for the road with all other vehicle types, the most vulnerable travelers are the people outside of automobiles. To avoid the dangers of the road, scooter users and cyclists sometimes resort to traveling on sidewalks, which in turn can create conflicts with pedestrians.Younger riders (under 18 years old) are most likely to injure themselves riding scooters [2], while pedestrians who are older adults and children are particularly at risk of sustaining injuries in sidewalk collisions [3]. Experience with micromobility, too, can impact rider behavior and safety. Regular cyclists, for example, are more likely to take longer detours to avoid dangerous routes than infrequent cyclists [4].
Payment structures may also affect how safely people use a shared mobility service. When users pay per minute, rather than by distance, they may choose to speed and compromise road safety [5]. A global study of bikeshare programs found that, in cities with bikeshare programs, bikeshare users were less likely than private cyclists to sustain fatal or severe injuries [6]. However, bikeshare users were less likely than private cyclists to wear helmets [7].
Infrastructure policies to improve road safety for micromobility users may involve establishing separate travel networks for automobiles and micromobility, or, when users share the roads, designing streets that slow motorized traffic and thus reduce the severity of crashes [8].
How Micromobility affects Education and Workforce
The transportation industry is changing rapidly due to technological advances. As a result, skillsets have diversified and expanded, requiring education and workforce development to adapt to these needs. Labor market research has shown that low-skilled workers tend to be most affected by the technological substitution of labor driven by new technologies such as automation [1]. New training tools are needed to equip the future workforce with the technical, adaptation, and capacity skills needed to react to the evolving industry [2].
There is limited research on workforce development specific to a transportation mode such as micromobility. Overall, the literature on transportation and workforce development recommends partnerships with industry and academia, increasing investment in workforce development, integrating training to pre-apprentice and apprentice programs, and collecting data to inform policies and decision-making [1], [3].
Early operations of shared e-micromobility services relied heavily on independent contractors, with one account estimating 40 percent of Bird’s operational costs at one point went towards workers to collect, charge, and distribute dockless e-scooter and bikes [4] . In 2019, California passed a law (AB5) reclassifying who could be considered independent contractors, shifting the labor market toward third party companies and away from part-time workers [5]. Future research could investigate how regulation of independent contractors has influenced the micromobility workforce.
How Micromobility affects Municipal Budgets
Budgetary impacts from micromobility include costs of permits, operating licenses and fines for risky behavior. The rise of shared dockless micromobility led to reactive policy making and regulations that largely constrained operations [1]. The use of such regulation has been motivated by the desire to control the presence of shared micromobility devices in cities, rather than viewing them as a promising line of municipal revenue. In fact, in many cases, municipalities are addressing the need to subsidize riders, especially when it comes to low-income users [2]. A 2024 study by the Transportation Research and Education Center assessed taxes and fees on micromobility, and found that they vary dramatically by city and are typically higher than taxes and fees on ride-hailing and private vehicles [3].
In general, the literature suggests that while micromobility has the potential to enhance quality of life and access to mobility [4], there are also externalities of social harm such as (mis)parking [5]. There is little available research related to how micromobility could influence the tax burden or base of a locality.
How Micromobility affects Social Equity
The social equity impacts of micromobility programs are somewhat mixed. In demographic analyses of bikeshare and scooter share riders in developed countries, studies often find that riders are, based on their income, education, youth or able-bodied status, relatively privileged [1], [2]. Though low-income travelers may be less likely to adopt bikeshare, those who do may use them more intensively and for more trip purposes than more affluent users [3], [4]. Shared micromobility programs designed with docked stations tend to be particularly unequally distributed geographically relative to dockless systems [5]. In light of these demographic and geographic imbalances, it is not uncommon for agencies to impose equity requirements in shared micromobility programs [6]. Social equity research in micromobility focuses on two main components 1) how to incentivize low-income and underrepresented groups to use the services (with a focus on policy measures or direct subsidies linked to spatial equity) and 2) how to include diverse voices in the planning process. Policy analysis is largely linked to geospatial distribution of access to bikeshare, scooter-share, and carshare [7], [8], [9].
Shared micromobility offers an alternative to private driving and thus displaces driving trips that make roads more dangerous and pollute air for everyone. And, it has the added benefit of providing job access and improved health outcomes [10], [11].
How Micromobility affects Transportation Systems Operations (and Efficiency)
The effects of micromobility modes on sustainability goals are mixed. A literature review by
McQueen et al [1] defined micromobility modes as “small, lightweight human-powered or electric vehicles operated at low speeds, including docked and dockless e-scooters and bike share systems,” and found mixed results of the modes’ effects across three key sustainability goals – reducing greenhouse gas emissions, equitable and reliable operations, and enhancement of the human experience. Regarding greenhouse gas emissions, the review concluded that micromobility modes have the potential to decrease emissions when serving as a substitute for automobile trips. One way this can occur is by complementing transit; making it more accessible and convenient and therefore more competitive with automobile trips. However, the review also found that micromobility trips often replace walking or transit trips, thus increasing emissions [2].
Municipalities see a human benefit to offering alternative modes. Research around perceptions of new mobility has found them to be a pleasant experience, especially for electrified mobility, although many of the studies are focused on e-bikes [3], [4]. Additionally, a significant amount of research focuses on the integration of micromobility with public transportation. The body of work related to this topic generally spans four study areas - policy, sustainability, interactions between shared micromobility and public transit, and infrastructure [5]. Improving first/last mile access and network efficiency is also a major focus area [6], [7]. Future research should focus on sustainability through business models analysis, comparing public and private operations and how best to navigate regulatory burdens surrounding the deployment of such services.
How Micromobility affects Land Use
Micromobility works best when the land use and transportation system supports it. The typical scooter share or bikeshare trip is under two miles and takes 11-12 minutes [1]. Micromobility - both manually-powered or electric-powered - may be faster than walking, but nonetheless slower than driving, and leaves users exposed to the elements and street traffic. Streets that are well-connected [2] and dense with a mix of establishments and residences, and robust transit options shorten trip distances and times, and, in turn, facilitate micromobility trips. A meta-analysis of shared micromobility programs found that ridership increased with population density, employment density, bus stops and metro stations, and bike infrastructure [3]. In contrast, low-density neighborhoods with few young people and zero-car households have less access to micromobility services [4]. In the longer run, micromobility may ultimately impact land use by providing more transportation nodes and extending the reach of shared transportation services [5]. A floating bikeshare or carshare service, for example, may enable residents in outlying urban areas to connect to a city’s fixed-route transit system.
How Micromobility affects Energy and Environment
Micromobility has mixed implications for urban transportation sustainability. A comprehensive study of 500 travelers revealed that while personal e-scooters and e-bikes tend to reduce carbon dioxide emissions compared to replaced transport modes, their shared counterparts might increase emissions [1]. Another emphasized the potential of micro-mobility to reduce greenhouse gas emissions, but highlighted that the real impact depends heavily on what transport modes are substituted, the types of trips, and the specific urban contexts, and suggests that existing shared micromobility programs often substitute for active transportation.[2] Policies and infrastructure adapted to these realities can enhance the benefits of micro-mobility. Systematic reviews further underscored that the shift to e-mobility often replaces walking and public transport, which could lead to increased energy demands - this is, however, not an intrinsic property, but a product of the availability of the service, ease of docking, and perceived safety of the service [2].
How Micromobility affects Health
Emerging micromobility options such as e-bikes and e-scooters can improve accessibility and connectivity for vulnerable population groups, such as those with physical limitations or without access to a car [1], [2]. Compared to biking or walking, electric micromobility (EMM) vehicles are often more accessible to users with lower interest in or capacity for physical activity, while still providing exercise and outdoor enjoyment [1], [2], [3]. For instance, e-bikes are favored by older adults as a form of physical activity and can encourage micromobility use for distances over 3 miles typically covered by cars [4], [5], [6]. An observational study found that starting to e-bike may increase overall biking frequency among older adults, potentially extending the number of years they are able to bike [4], [5], [6]. Despite being less physically demanding than conventional biking, e-biking offers many of the same cardiovascular benefits [5], [7].
In addition to health benefits from access, physical activity, and outdoor enjoyment, increased EMM vehicle usage has the potential to reduce air pollution from cars by substituting car trips and improving access to public transit. EMM vehicles can address the first-mile-last-mile problem, supporting the use of public transit [8], [9]. They also provide an alternative mode of transportation for short trips, which can help alleviate overcrowding on public transport and support social distancing when necessary [8]. Moreover, EMM vehicles may contribute to noise pollution reduction, which is linked to adverse health effects such as cognitive impairment in children and sleep disturbance [9]. However, studies indicate that not all EMM vehicles have the same environmental health benefits; e-scooters, for instance, may have a negative environmental impact compared to the modes they replace (for example, they may replace pedestrian trips) [9], [10], [11]. Additionally, the collection vehicles used for relocating and charging EMM vehicles in shared vehicle programs can contribute to emissions, particularly in less densely populated areas [9].
Safety remains a primary concern for public health regarding EMM usage, and is discussed in more detail in the section devoted to safety impacts. Cyclists, including e-bike users, are vulnerable to injuries and fatalities from collisions with cars. Electric scooter usage can also result in serious injuries, especially head and limb injuries, exacerbated by low helmet usage [9], [12]. Injuries to pedestrians from e-scooter riders on sidewalks are another significant concern [9]. Providing separate, designated infrastructure for EMM can enhance safety [1].
Future research could include the development of best practices for maximizing public health benefits of micromobility programs, as well as further analysis of the health impacts of different micromobility modes.
How Micromobility affects Safety
Safety is a paramount concern - and barrier to more use - for people who want to travel by bike or scooter, motorized or not. Street connectivity and dedicated bike routes offer some of the strongest safety protections for micromobility users [1]. In places without protected infrastructure for active transportation, where cars compete for the road with all other vehicle types, the most vulnerable travelers are the people outside of automobiles. To avoid the dangers of the road, scooter users and cyclists sometimes resort to traveling on sidewalks, which in turn can create conflicts with pedestrians.Younger riders (under 18 years old) are most likely to injure themselves riding scooters [2], while pedestrians who are older adults and children are particularly at risk of sustaining injuries in sidewalk collisions [3]. Experience with micromobility, too, can impact rider behavior and safety. Regular cyclists, for example, are more likely to take longer detours to avoid dangerous routes than infrequent cyclists [4].
Payment structures may also affect how safely people use a shared mobility service. When users pay per minute, rather than by distance, they may choose to speed and compromise road safety [5]. A global study of bikeshare programs found that, in cities with bikeshare programs, bikeshare users were less likely than private cyclists to sustain fatal or severe injuries [6]. However, bikeshare users were less likely than private cyclists to wear helmets [7].
Infrastructure policies to improve road safety for micromobility users may involve establishing separate travel networks for automobiles and micromobility, or, when users share the roads, designing streets that slow motorized traffic and thus reduce the severity of crashes [8].
How Micromobility affects Education and Workforce
The transportation industry is changing rapidly due to technological advances. As a result, skillsets have diversified and expanded, requiring education and workforce development to adapt to these needs. Labor market research has shown that low-skilled workers tend to be most affected by the technological substitution of labor driven by new technologies such as automation [1]. New training tools are needed to equip the future workforce with the technical, adaptation, and capacity skills needed to react to the evolving industry [2].
There is limited research on workforce development specific to a transportation mode such as micromobility. Overall, the literature on transportation and workforce development recommends partnerships with industry and academia, increasing investment in workforce development, integrating training to pre-apprentice and apprentice programs, and collecting data to inform policies and decision-making [1], [3].
Early operations of shared e-micromobility services relied heavily on independent contractors, with one account estimating 40 percent of Bird’s operational costs at one point went towards workers to collect, charge, and distribute dockless e-scooter and bikes [4] . In 2019, California passed a law (AB5) reclassifying who could be considered independent contractors, shifting the labor market toward third party companies and away from part-time workers [5]. Future research could investigate how regulation of independent contractors has influenced the micromobility workforce.
How Micromobility affects Municipal Budgets
Budgetary impacts from micromobility include costs of permits, operating licenses and fines for risky behavior. The rise of shared dockless micromobility led to reactive policy making and regulations that largely constrained operations [1]. The use of such regulation has been motivated by the desire to control the presence of shared micromobility devices in cities, rather than viewing them as a promising line of municipal revenue. In fact, in many cases, municipalities are addressing the need to subsidize riders, especially when it comes to low-income users [2]. A 2024 study by the Transportation Research and Education Center assessed taxes and fees on micromobility, and found that they vary dramatically by city and are typically higher than taxes and fees on ride-hailing and private vehicles [3].
In general, the literature suggests that while micromobility has the potential to enhance quality of life and access to mobility [4], there are also externalities of social harm such as (mis)parking [5]. There is little available research related to how micromobility could influence the tax burden or base of a locality.
How Micromobility affects Social Equity
The social equity impacts of micromobility programs are somewhat mixed. In demographic analyses of bikeshare and scooter share riders in developed countries, studies often find that riders are, based on their income, education, youth or able-bodied status, relatively privileged [1], [2]. Though low-income travelers may be less likely to adopt bikeshare, those who do may use them more intensively and for more trip purposes than more affluent users [3], [4]. Shared micromobility programs designed with docked stations tend to be particularly unequally distributed geographically relative to dockless systems [5]. In light of these demographic and geographic imbalances, it is not uncommon for agencies to impose equity requirements in shared micromobility programs [6]. Social equity research in micromobility focuses on two main components 1) how to incentivize low-income and underrepresented groups to use the services (with a focus on policy measures or direct subsidies linked to spatial equity) and 2) how to include diverse voices in the planning process. Policy analysis is largely linked to geospatial distribution of access to bikeshare, scooter-share, and carshare [7], [8], [9].
Shared micromobility offers an alternative to private driving and thus displaces driving trips that make roads more dangerous and pollute air for everyone. And, it has the added benefit of providing job access and improved health outcomes [10], [11].
How Micromobility affects Transportation Systems Operations (and Efficiency)
The effects of micromobility modes on sustainability goals are mixed. A literature review by
McQueen et al [1] defined micromobility modes as “small, lightweight human-powered or electric vehicles operated at low speeds, including docked and dockless e-scooters and bike share systems,” and found mixed results of the modes’ effects across three key sustainability goals – reducing greenhouse gas emissions, equitable and reliable operations, and enhancement of the human experience. Regarding greenhouse gas emissions, the review concluded that micromobility modes have the potential to decrease emissions when serving as a substitute for automobile trips. One way this can occur is by complementing transit; making it more accessible and convenient and therefore more competitive with automobile trips. However, the review also found that micromobility trips often replace walking or transit trips, thus increasing emissions [2].
Municipalities see a human benefit to offering alternative modes. Research around perceptions of new mobility has found them to be a pleasant experience, especially for electrified mobility, although many of the studies are focused on e-bikes [3], [4]. Additionally, a significant amount of research focuses on the integration of micromobility with public transportation. The body of work related to this topic generally spans four study areas - policy, sustainability, interactions between shared micromobility and public transit, and infrastructure [5]. Improving first/last mile access and network efficiency is also a major focus area [6], [7]. Future research should focus on sustainability through business models analysis, comparing public and private operations and how best to navigate regulatory burdens surrounding the deployment of such services.
How Micromobility affects Land Use
Micromobility works best when the land use and transportation system supports it. The typical scooter share or bikeshare trip is under two miles and takes 11-12 minutes [1]. Micromobility - both manually-powered or electric-powered - may be faster than walking, but nonetheless slower than driving, and leaves users exposed to the elements and street traffic. Streets that are well-connected [2] and dense with a mix of establishments and residences, and robust transit options shorten trip distances and times, and, in turn, facilitate micromobility trips. A meta-analysis of shared micromobility programs found that ridership increased with population density, employment density, bus stops and metro stations, and bike infrastructure [3]. In contrast, low-density neighborhoods with few young people and zero-car households have less access to micromobility services [4]. In the longer run, micromobility may ultimately impact land use by providing more transportation nodes and extending the reach of shared transportation services [5]. A floating bikeshare or carshare service, for example, may enable residents in outlying urban areas to connect to a city’s fixed-route transit system.
How Micromobility affects Energy and Environment
Micromobility has mixed implications for urban transportation sustainability. A comprehensive study of 500 travelers revealed that while personal e-scooters and e-bikes tend to reduce carbon dioxide emissions compared to replaced transport modes, their shared counterparts might increase emissions [1]. Another emphasized the potential of micro-mobility to reduce greenhouse gas emissions, but highlighted that the real impact depends heavily on what transport modes are substituted, the types of trips, and the specific urban contexts, and suggests that existing shared micromobility programs often substitute for active transportation.[2] Policies and infrastructure adapted to these realities can enhance the benefits of micro-mobility. Systematic reviews further underscored that the shift to e-mobility often replaces walking and public transport, which could lead to increased energy demands - this is, however, not an intrinsic property, but a product of the availability of the service, ease of docking, and perceived safety of the service [2].