On-demand delivery services have been shown to have a significant impact on transportation systems, both positively and negatively [1]. On the positive side, modern delivery services could reduce shopping trips to physical stores and related energy consumption [2] and greenhouse gas emissions [3]. Emissions from delivery services vary based on delivery scheduling [4], service coverage area [5], engine type (e.g., combustion or electric), and efficiency of cooling equipment [6]. On the negative side, the increasing number of delivery vehicles adds to crash risk in the transportation system, particularly for road users [7]. In addition, the delivery vehicles compete for limited curbside space in the urban area [8], [9].
Research on the impact of robotic delivery services on transportation systems is predominantly theoretical, due to scarce empirical evidence. The City of Pittsburgh [10] operated a six-month pilot program with Kiwibot and deployed a limited number of devices (less than 10 at any time) to deliver packages. Different from package delivery robots, which mostly operate on sidewalks and have a limited influence on the road traffic, future autonomous delivery vehicles could exert a huge impact on the traffic systems. Studies showed mixed results about the effects of autonomous vehicles on traffic flow efficiency, both positive and negative, depending on their modeling conditions [11].
References
J. Visser, T. Nemoto, and M. Browne, “Home Delivery and the Impacts on Urban Freight Transport: A Review,” Procedia – Soc. Behav. Sci., vol. 125, pp. 15–27, Mar. 2014, doi: 10.1016/j.sbspro.2014.01.1452.
M. Stinson, A. Enam, A. Moore, and J. Auld, “Citywide Impacts of E-Commerce: Does Parcel Delivery Travel Outweigh Household Shopping Travel Reductions?,” in Proceedings of the 2nd ACM/EIGSCC Symposium on Smart Cities and Communities, Portland OR USA: ACM, Sep. 2019, pp. 1–7. doi: 10.1145/3357492.3358633.
H. Siikavirta, M. Punakivi, M. Kärkkäinen, and L. Linnanen, “Effects of E‐Commerce on Greenhouse Gas Emissions: A Case Study of Grocery Home Delivery in Finland,” J. Ind. Ecol., vol. 6, no. 2, pp. 83–97, Apr. 2002, doi: 10.1162/108819802763471807.
Y. Yu, J. Tang, J. Li, W. Sun, and J. Wang, “Reducing carbon emission of pickup and delivery using integrated scheduling,” Transp. Res. Part Transp. Environ., vol. 47, pp. 237–250, Aug. 2016, doi: 10.1016/j.trd.2016.05.011.
J. C. Velázquez-Martínez, J. C. Fransoo, E. E. Blanco, and K. B. Valenzuela-Ocaña, “A new statistical method of assigning vehicles to delivery areas for CO2 emissions reduction,” Transp. Res. Part Transp. Environ., vol. 43, pp. 133–144, Mar. 2016, doi: 10.1016/j.trd.2015.12.009.
C. Siragusa, A. Tumino, R. Mangiaracina, and A. Perego, “Electric vehicles performing last-mile delivery in B2C e-commerce: An economic and environmental assessment,” Int. J. Sustain. Transp., vol. 16, no. 1, pp. 22–33, Jan. 2022, doi: 10.1080/15568318.2020.1847367.
Y. He, C. Sun, and F. Chang, “The road safety and risky behavior analysis of delivery vehicle drivers in China,” Accid. Anal. Prev., vol. 184, p. 107013, May 2023, doi: 10.1016/j.aap.2023.107013.
J. Liu, W. Ma, and S. Qian, “Optimal curbside pricing for managing ride-hailing pick-ups and drop-offs,” Transp. Res. Part C Emerg. Technol., vol. 146, p. 103960, Jan. 2023, doi: 10.1016/j.trc.2022.103960.
X. Liu, S. Qian, H.-H. Teo, and W. Ma, “Estimating and Mitigating the Congestion Effect of Curbside Pick-ups and Drop-offs: A Causal Inference Approach,” 2022, doi: 10.48550/ARXIV.2206.02164.
-
City of Pittsburgh Mobility and Infrastructure, “2021 Personal Delivery Device Final Pilot Evaluation.” Accessed: May 13, 2024. [Online]. Available: https://hdp-us-prod-app-pgh-engage-files.s3.us-west-2.amazonaws.com/9616/5540/2948/PDD_Final_Pilot_Evaluation_v2.pdf
S. Narayanan, E. Chaniotakis, and C. Antoniou, “Chapter One – Factors affecting traffic flow efficiency implications of connected and autonomous vehicles: A review and policy recommendations,” in Advances in Transport Policy and Planning, vol. 5, D. Milakis, N. Thomopoulos, and B. van Wee, Eds., in Policy Implications of Autonomous Vehicles, vol. 5. , Academic Press, 2020, pp. 1–50. doi: 10.1016/bs.atpp.2020.02.004.
Related Literature Reviews
See Literature Reviews on On-Demand Delivery Services
See Literature Reviews on Transportation Systems Operations (and Efficiency)
Note: Mobility COE research partners conducted this literature review in Spring of 2024 based on research available at the time. Unless otherwise noted, this content has not been updated to reflect newer research.
Citing text in non-academic sources:
- Attribute to “Center of Excellence on New Mobility and Automated Vehicles”
- When links are included, include a link to the individual page where the statement was made.
Citing text in academic sources:
- The Center of Excellence on New Mobility and Automated Vehicles recommend that you visit, read, and cite the academic articles referenced here