Collectively referred to as connected and automated vehicles (CAVs), connected vehicles (CVs), which communicate wirelessly with one another, and automated vehicles (AVs), in which a computer partially or entirely replaces the driver, have the capacity to revolutionize road maintenance and transportation operations [1]. According to Egan Smith (Managing Director of the Intelligent Transportation Systems (ITS) Joint Program Office of the United States Department of Transportation), "Successful deployment and operation of these new technologies depend largely on a knowledgeable, trained, and skilled workforce to support them” [2].
According to the California Department of Transportation's (Caltrans) strategic strategy, workforce development is a key action plan for CAV deployment [3]. Caltrans emphasized the importance of identifying labor difficulties and needs, as well as encouraging state efforts to recruit and retain the future workforce, in order to continue CAV. It could necessitate developing proper job categories, role descriptions, hiring procedures, and competitive salary ranges. Another option is to create a pool of highly skilled individuals (such as data scientists and network engineers) who can be housed in one functional unit and then transferred to other functional units or districts to share their technical expertise.
As CV and V2X technology advances, the Intelligent Transportation Systems (ITS) transportation workforce will require advanced knowledge, skills, and abilities. As a result, new and modified training opportunities are important for the ITS workforce to develop the advanced skill sets required to maintain a transportation network populated by evolving technologies [2].
Workforce development is essential not just for CAV deployment, but also for maintenance and repair (M&R). To stay up with technological advances, employees in this field must be upskilled and trained on a regular basis [4]. Crane et al. [5] also acknowledged that there is an increasing need to comprehend middle-skill positions, such as technicians, engineers, systems architects, managers, and IT specialists (that require at least a bachelor’s degree).
According to Parikh et al. [1], the most significant expense associated with CV deployment is the cost of labor for CV installation/deployment and people training. According to the author, operations and maintenance expenditures only account for about 20 percent of time, while the complexity of personnel training accounts for the other 80 percent.
References
-
G. Parikh, M. Duhn, and J. Hourdos, “How Locals Need to Prepare for the Future of V2V/V2I Connected Vehicles,” Aug. 2019, Accessed: May 16, 2024. [Online]. Available: http://hdl.handle.net/11299/208698
-
M. Noch, “Are We Ready for Connected and Automated Vehicles?,” Federal Highway Administration. Accessed: May 16, 2024. [Online]. Available: https://highways.dot.gov/public-roads/spring-2018/are-we-ready-connected-and-automated-vehicles
-
B. McKeever, P. Wang, and T. West, “Caltrans Connected and Automated Vehicle Strategic Plan,” Dec. 2020, Accessed: May 16, 2024. [Online]. Available: https://escholarship.org/uc/item/0b80z3s3
M. Grosso et al., “How will vehicle automation and electrification affect the automotive maintenance, repair sector?,” Transp. Res. Interdiscip. Perspect., vol. 12, p. 100495, Dec. 2021, doi: 10.1016/j.trip.2021.100495.
S. Crane, S. Wilson, S. Richardson, and R. Glauser, “Understanding the Middle-Skill Workforce in the Connected and Automated Vehicle Sector,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3819990.
Related Literature Reviews
See Literature Reviews on Connectivity: CV, CAV, and V2X
See Literature Reviews on Education and Workforce
Note: Mobility COE research partners conducted this literature review in Spring of 2024 based on research available at the time. Unless otherwise noted, this content has not been updated to reflect newer research.